Additional work

- Move processDecl to separate file
- Add missing files
- Move Syntax.idr to Lib
This commit is contained in:
2024-07-21 21:16:47 -07:00
parent dc51e8af17
commit 0bb2d48d72
11 changed files with 358 additions and 145 deletions

12
newt/ptest1.newt Normal file
View File

@@ -0,0 +1,12 @@
module Bug
Nat : U
Nat = (N : U) -> (N -> N) -> N -> N
zero : Nat
zero = \ U s z => z
-- This fails unification if we allow U on the LHS, because U is special on the RHS.
-- We need to not parse it on the LHS if we're not pattern matching.
succ : Nat -> Nat
succ = \ n U s z => s (n U s z)

8
newt/test1.newt Normal file
View File

@@ -0,0 +1,8 @@
module Scratch
nat : U
nat = {C : U} -> C -> (nat -> C) -> C
-- TESTCASE This was broken when I wasn't expanding Ref ty in check
succ : nat -> nat
succ = \n => \ z s => s n

93
newt/zoo4.newt Normal file
View File

@@ -0,0 +1,93 @@
module Zoo4
id : {A : U} -> A -> A
id = \x => x -- elaborated to \{A} x. x
-- implicit arg types can be omitted
const : {A B} -> A -> B -> A
const = \x y => x
-- function arguments can be grouped:
group1 : {A B : U}(x y z : A) -> B -> B
group1 = \x y z b => b
group2 : {A B}(x y z : A) -> B -> B
group2 = \x y z b=> b
-- explicit id function used for annotation as in Idris
the : (A : _) -> A -> A
the = \_ x => x
-- implicit args can be explicitly given
-- NB kovacs left off the type (different syntax), so I put a hole in there
argTest1 : _
argTest1 = const {U} {U} U
-- I've decided not to do = in the {} for now.
-- let argTest2 = const {B = U} U; -- only give B, the second implicit arg
-- again no type, this hits a lambda in infer.
-- I think we need to create two metas and make a pi of them.
insert2 : _
insert2 = (\{A} x => the A x) U -- (\{A} x => the A x) {U} U
Bool : U
Bool = (B : _) -> B -> B -> B
true : Bool
true = \B t f => t
false : Bool
false = \B t f => f
List : U -> U
List = \A => (L : _) -> (A -> L -> L) -> L -> L
nil : {A} -> List A
nil = \L cons nil => nil
cons : {A} -> A -> List A -> List A
cons = \ x xs L cons nil => cons x (xs L cons nil)
map : {A B} -> (A -> B) -> List A -> List B
map = \{A} {B} f xs L c n => xs L (\a => c (f a)) n
list1 : List Bool
list1 = cons true (cons false (cons true nil))
-- dependent function composition
comp : {A} {B : A -> U} {C : {a} -> B a -> U}
(f : {a} (b : B a) -> C b)
(g : (a : A) -> B a)
(a : A)
-> C (g a)
comp = \f g a => f (g a)
compExample : _
compExample = comp (cons true) (cons false) nil
Nat : U
Nat = (N : U) -> (N -> N) -> N -> N
-- TODO - first underscore there, why are there two metas?
mul : Nat -> Nat -> Nat
mul = \a b N s z => a _ (b _ s) z
ten : Nat
ten = \N s z => (s (s (s (s (s (s (s (s (s (s z))))))))))
hundred : _
hundred = mul ten ten
-- Leibniz equality
Eq : {A} -> A -> A -> U
Eq = \{A} x y => (P : A -> U) -> P x -> P y
refl : {A} {x : A} -> Eq x x
refl = \_ px => px
sym : {A x y} -> Eq {A} x y -> Eq y x
sym = \p => p (\y => Eq y x) refl
eqtest : Eq (mul ten ten) hundred
eqtest = refl