get delete, leftMost, rightMost, pop working for SortedMap

required fixing an issue in case building.
This commit is contained in:
2024-12-13 20:58:04 -08:00
parent 62b4bc15c4
commit 29abacfa6c
5 changed files with 170 additions and 15 deletions

View File

@@ -31,12 +31,6 @@ instance Ord Point where
instance Eq Point where instance Eq Point where
(a,b) == (c,d) = a == c && b == d (a,b) == (c,d) = a == c && b == d
swap : a b. a × b b × a
swap (a,b) = (b,a)
const : a b. a b a
const a b = a
-- TODO add parameter a and pass Char -> a into getGrid -- TODO add parameter a and pass Char -> a into getGrid
Grid : U Grid : U
Grid = SortedMap Point Int Grid = SortedMap Point Int

View File

@@ -2,6 +2,10 @@ module SortedMap
import Prelude import Prelude
-- TODO We'll want to replace Ord/Eq with (a → Ordering) (and rewrite most of our aoc solutions...)
-- data Ordering : U where
-- LT EQ GT : Ordering
data T23 : Nat -> U -> U -> U where data T23 : Nat -> U -> U -> U where
Leaf : k v. k -> v -> T23 Z k v Leaf : k v. k -> v -> T23 Z k v
Node2 : h k v. T23 h k v -> k -> T23 h k v -> T23 (S h) k v Node2 : h k v. T23 h k v -> k -> T23 h k v -> T23 (S h) k v
@@ -43,9 +47,127 @@ insertT23 key value (Node3 t1 k1 t2 k2 t3) =
Left t3' => Left (Node3 t1 k1 t2 k2 t3') Left t3' => Left (Node3 t1 k1 t2 k2 t3')
Right (a,b,c) => Right (Node2 t1 k1 t2, k2, Node2 a b c) Right (a,b,c) => Right (Node2 t1 k1 t2, k2, Node2 a b c)
-- This is cribbed from Idris. Deleting nodes takes a bit of code.
Hole : Nat U U U
Hole Z k v = Unit
Hole (S n) k v = T23 n k v
Node4 : k v h. T23 h k v k T23 h k v k T23 h k v k T23 h k v T23 (S (S h)) k v
Node4 t1 k1 t2 k2 t3 k3 t4 = Node2 (Node2 t1 k1 t2) k2 (Node2 t3 k3 t4)
Node5 : k v h. T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v T23 (S (S h)) k v
Node5 a b c d e f g h i = Node2 (Node2 a b c) d (Node3 e f g h i)
Node6 : k v h. T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v T23 (S (S h)) k v
Node6 a b c d e f g h i j k = Node2 (Node3 a b c d e) f (Node3 g h i j k)
Node7 : k v h. T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v T23 (S (S h)) k v
Node7 a b c d e f g h i j k l m = Node3 (Node3 a b c d e) f (Node2 g h i) j (Node2 k l m)
merge1 : k v h. T23 h k v k T23 (S h) k v k T23 (S h) k v T23 (S (S h)) k v
merge1 a b (Node2 c d e) f (Node2 g h i) = Node5 a b c d e f g h i
merge1 a b (Node2 c d e) f (Node3 g h i j k) = Node6 a b c d e f g h i j k
merge1 a b (Node3 c d e f g) h (Node2 i j k) = Node6 a b c d e f g h i j k
merge1 a b (Node3 c d e f g) h (Node3 i j k l m) = Node7 a b c d e f g h i j k l m
merge2 : k v h. T23 (S h) k v k T23 h k v k T23 (S h) k v T23 (S (S h)) k v
merge2 (Node2 a b c) d e f (Node2 g h i) = Node5 a b c d e f g h i
merge2 (Node2 a b c) d e f (Node3 g h i j k) = Node6 a b c d e f g h i j k
merge2 (Node3 a b c d e) f g h (Node2 i j k) = Node6 a b c d e f g h i j k
merge2 (Node3 a b c d e) f g h (Node3 i j k l m) = Node7 a b c d e f g h i j k l m
merge3 : k v h. T23 (S h) k v k T23 (S h) k v k T23 h k v T23 (S (S h)) k v
merge3 (Node2 a b c) d (Node2 e f g) h i = Node5 a b c d e f g h i
merge3 (Node2 a b c) d (Node3 e f g h i) j k = Node6 a b c d e f g h i j k
merge3 (Node3 a b c d e) f (Node2 g h i) j k = Node6 a b c d e f g h i j k
merge3 (Node3 a b c d e) f (Node3 g h i j k) l m = Node7 a b c d e f g h i j k l m
-- height is erased in the data everywhere but the top, but needed for case
-- I wonder if we could use a 1 + 1 + 1 type instead of Either Tree Hole and condense this
deleteT23 : k v. {{Ord k}} {{Eq k}} (h : Nat) -> k -> T23 h k v -> Either (T23 h k v) (Hole h k v)
deleteT23 Z key (Leaf k v) = if k == key then Right MkUnit else Left (Leaf k v)
deleteT23 (S Z) key (Node2 t1 k1 t2) =
if key <= k1
then case deleteT23 Z key t1 of
Left t1 => Left (Node2 t1 k1 t2)
Right _ => Right t2
else case deleteT23 Z key t2 of
Left t2 => Left (Node2 t1 k1 t2)
Right MkUnit => Right t1
deleteT23 (S Z) key (Node3 t1 k1 t2 k2 t3) =
if key <= k1
then case deleteT23 _ key t1 of
Left t1 => Left (Node3 t1 k1 t2 k2 t3)
Right MkUnit => Left (Node2 t2 k2 t3)
else if key <= k2 then case deleteT23 _ key t2 of
Left t2 => Left (Node3 t1 k1 t2 k2 t3)
Right _ => Left (Node2 t1 k1 t3)
else case deleteT23 _ key t3 of
Left t3 => Left (Node3 t1 k1 t2 k2 t3)
Right _ => Left (Node2 t1 k1 t2)
deleteT23 (S (S h)) key (Node2 t1 k1 t2) =
if key <= k1
then case deleteT23 (S h) key t1 of
Left t1 => Left (Node2 t1 k1 t2)
Right t1 => case t2 of
Node2 t2' k2' t3' => Right (Node3 t1 k1 t2' k2' t3')
Node3 t2 k2 t3 k3 t4 => Left $ Node4 t1 k1 t2 k2 t3 k3 t4
else case deleteT23 _ key t2 of
Left t2 => Left (Node2 t1 k1 t2)
Right t2 => case t1 of
Node2 a b c => Right (Node3 a b c k1 t2)
Node3 a b c d e => Left (Node4 a b c d e k1 t2)
deleteT23 (S (S h)) key (Node3 t1 k1 t2 k2 t3) =
if key <= k1
then case deleteT23 _ key t1 of
Left t1 => Left (Node3 t1 k1 t2 k2 t3)
Right t1 => Left (merge1 t1 k1 t2 k2 t3)
else if key <= k2 then case deleteT23 _ key t2 of
Left t2 => Left (Node3 t1 k1 t2 k2 t3)
Right t2 => Left (merge2 t1 k1 t2 k2 t3)
else case deleteT23 _ key t3 of
Left t3 => Left (Node3 t1 k1 t2 k2 t3)
Right t3 => Left (merge3 t1 k1 t2 k2 t3)
treeLeft : h k v. T23 h k v (k × v)
treeLeft (Leaf k v) = (k, v)
treeLeft (Node2 t1 _ _) = treeLeft t1
treeLeft (Node3 t1 _ _ _ _) = treeLeft t1
treeRight : h k v. T23 h k v (k × v)
treeRight (Leaf k v) = (k, v)
treeRight (Node2 _ _ t2) = treeRight t2
treeRight (Node3 _ _ _ _ t3) = treeRight t3
data SortedMap : U -> U -> U where data SortedMap : U -> U -> U where
EmptyMap : k v. SortedMap k v EmptyMap : k v. SortedMap k v
MapOf : k v h. T23 h k v -> SortedMap k v -- not erased so we know what happens in delete
MapOf : k v. {h : Nat} T23 h k v -> SortedMap k v
deleteMap : k v. {{Ord k}} {{Eq k}} k SortedMap k v SortedMap k v
deleteMap key EmptyMap = EmptyMap
-- REVIEW if I split h separately in a nested case, it doesn't sort out Hole
deleteMap key (MapOf {k} {v} {Z} tree) = case deleteT23 Z key tree of
Left t => MapOf t
Right t => EmptyMap
deleteMap key (MapOf {k} {v} {S n} tree) = case deleteT23 (S n) key tree of
Left t => MapOf t
Right t => MapOf t
leftMost : k v. SortedMap k v Maybe (k × v)
leftMost EmptyMap = Nothing
leftMost (MapOf m) = Just (treeLeft m)
rightMost : k v. SortedMap k v Maybe (k × v)
rightMost EmptyMap = Nothing
rightMost (MapOf m) = Just (treeRight m)
-- TODO issue with metas and case if written as `do` block
pop : k v. {{Eq k}} {{Ord k}} SortedMap k v Maybe ((k × v) × SortedMap k v)
pop m = case leftMost m of
Just (k,v) => Just ((k,v), deleteMap k m)
Nothing => Nothing
lookupMap : k v. {{Ord k}} {{Eq k}} -> k -> SortedMap k v -> Maybe (k × v) lookupMap : k v. {{Ord k}} {{Eq k}} -> k -> SortedMap k v -> Maybe (k × v)
lookupMap k EmptyMap = Nothing lookupMap k EmptyMap = Nothing

View File

@@ -637,8 +637,8 @@ instance Cast Int Double where
instance Applicative IO where instance Applicative IO where
return a = \ w => MkIORes a w return a = \ w => MkIORes a w
f <*> a = \ w => f <*> a = \ w =>
let (MkIORes f w) = trace "fw" $ f w in let (MkIORes f w) = f w in
let (MkIORes a w) = trace "aw" $ a w in let (MkIORes a w) = a w in
MkIORes (f a) w MkIORes (f a) w
class Bifunctor (f : U U U) where class Bifunctor (f : U U U) where
@@ -740,3 +740,6 @@ instance Cast Int Nat where
instance Show Char where instance Show Char where
show c = jsShow c show c = jsShow c
swap : a b. a × b b × a
swap (a,b) = (b,a)

View File

@@ -79,9 +79,10 @@ sapp (CApp K t) I = t
sapp (CApp K t) (CApp K u) = CApp K (CApp t u) sapp (CApp K t) (CApp K u) = CApp K (CApp t u)
-- was out of pattern because of unexpanded lets. -- was out of pattern because of unexpanded lets.
sapp (CApp K t) u = CApp (CApp B t) u sapp (CApp K t) u = CApp (CApp B t) u
-- TODO unsolved meta, out of pattern fragment -- TODO unsolved meta, out of pattern fragment (now it's skolem - from changes to updateContext?)
-- so I may need to point the var -> var in another direction (hopefully something simple)
sapp t (CApp K u) = ? -- CApp (CApp C t) u sapp t (CApp K u) = ? -- CApp (CApp C t) u
-- TODO unsolved meta, out of pattern fragment -- TODO unsolved meta, out of pattern fragment (ditto, skolem)
sapp t u = ? -- CApp (CApp S t) u sapp t u = ? -- CApp (CApp S t) u
abs : {Γ : Ctx} {σ τ : Type} {f : _} Comb (σ :: Γ) τ f Comb Γ (σ ~> τ) (\ env x => f (x ::: env)) abs : {Γ : Ctx} {σ τ : Type} {f : _} Comb (σ :: Γ) τ f Comb Γ (σ ~> τ) (\ env x => f (x ::: env))

View File

@@ -517,13 +517,31 @@ substVal k v tm = go tm
-- go (VLit x y) = ?rhs_8 -- go (VLit x y) = ?rhs_8
-- need to turn k into a ground value
-- TODO rework this to do something better. We've got constraints, and
-- and may need to do proper unification if it's already defined to a value
-- below we're handling the case if it's defined to another var, but not
-- checking for loops.
updateContext : Context -> List (Nat, Val) -> M Context updateContext : Context -> List (Nat, Val) -> M Context
updateContext ctx [] = pure ctx updateContext ctx [] = pure ctx
updateContext ctx ((k, val) :: cs) = let ix = (length ctx.env `minus` k) `minus` 1 in updateContext ctx ((k, val) :: cs) =
updateContext ({env $= map (substVal k val), bds $= replaceV ix Defined } ctx) cs let ix = (length ctx.env `minus` k) `minus` 1 in
case getAt ix ctx.env of
(Just (VVar _ k' [<])) =>
if k' /= k
then updateContext ctx ((k',val) :: cs)
else updateContext ({env $= map (substVal k val), bds $= replaceV ix Defined } ctx) cs
(Just val') => do
-- This is fine for Z =?= Z but for other stuff, we probably have to match
info (getFC val) "need to unify \{show val} and \{show val'} or something"
updateContext ctx cs
Nothing => error (getFC val) "INTERNAL ERROR: bad index in updateContext"
--
-- updateContext ({env $= replace ix val, bds $= replaceV ix Defined } ctx) cs -- updateContext ({env $= replace ix val, bds $= replaceV ix Defined } ctx) cs
where where
replace : Nat -> a -> List a -> List a replace : Nat -> Val -> List Val -> List Val
replace k x [] = [] replace k x [] = []
replace 0 x (y :: xs) = x :: xs replace 0 x (y :: xs) = x :: xs
replace (S k) x (y :: xs) = y :: replace k x xs replace (S k) x (y :: xs) = y :: replace k x xs
@@ -562,16 +580,29 @@ buildCase ctx prob scnm scty (dcName, arity, ty) = do
let (VRef _ sctynm _ _) = scty | _ => error (getFC scty) "case split on non-inductive \{show scty}" let (VRef _ sctynm _ _) = scty | _ => error (getFC scty) "case split on non-inductive \{show scty}"
case lookupDef ctx scnm of case lookupDef ctx scnm of
-- NOW this is S var7
Just val@(VRef fc nm y sp) => Just val@(VRef fc nm y sp) =>
if nm /= dcName if nm /= dcName
then do then do
debug "SKIP \{dcName} because \{scnm} forced to \{show val}" debug "SKIP \{dcName} because \{scnm} forced to \{show val}"
pure Nothing pure Nothing
else do else do
debug "DOTTED \{dcName} \{show val}" debug "case \{dcName} dotted \{show val}"
when (length vars /= length sp) $ error emptyFC "\{show $ length vars} vars /= \{show $ length sp}"
-- TODO - do we need this one?
-- Constrain the scrutinee's variable to be dcon applied to args
-- let Just x = findIndex ((==scnm) . fst) ctx'.types
-- | Nothing => error ctx.fc "\{scnm} not is scope?"
-- let lvl = ((length ctx'.env) `minus` (cast x)) `minus` 1
-- let scon : (Nat, Val) = (lvl, VRef ctx.fc dcName (DCon arity dcName) sc)
-- TODO - I think we need to define the context vars to sp via updateContext -- TODO - I think we need to define the context vars to sp via updateContext
let lvl = (length ctx'.env `minus` length vars)
let scons = constrainSpine lvl (sp <>> []) -- REVIEW is this the right order?
ctx' <- updateContext ctx' scons
debug "(dcon \{show dcName} ty \{show ty'} scty \{show scty}" debug "(dcon \{show dcName} ty \{show ty'} scty \{show scty}"
debug "(dcon \{show dcName}) (vars \{show vars}) clauses were" debug "(dcon \{show dcName}) (vars \{show vars}) clauses were"
for_ prob.clauses $ (\x => debug " \{show x}") for_ prob.clauses $ (\x => debug " \{show x}")
@@ -620,6 +651,10 @@ buildCase ctx prob scnm scty (dcName, arity, ty) = do
tm <- buildTree ctx' (MkProb clauses prob.ty) tm <- buildTree ctx' (MkProb clauses prob.ty)
pure $ Just $ CaseCons dcName (map getName vars) tm pure $ Just $ CaseCons dcName (map getName vars) tm
where where
constrainSpine : Nat -> List Val -> List (Nat, Val)
constrainSpine lvl [] = []
constrainSpine lvl (v :: vs) = (lvl, v) :: constrainSpine (S lvl) vs
getName : Bind -> String getName : Bind -> String
getName (MkBind nm _ _) = nm getName (MkBind nm _ _) = nm