Fix RHole, add test files, papers, piforall examples
This commit is contained in:
74
piforall/Lennart.pi
Normal file
74
piforall/Lennart.pi
Normal file
@@ -0,0 +1,74 @@
|
||||
module Lennart where
|
||||
|
||||
-- stack exec -- pi-forall Lennart.pi
|
||||
-- with unbind / subst
|
||||
-- 7.81s user 0.52s system 97% cpu 8.568 total
|
||||
-- with substBind
|
||||
-- 3.81s user 0.28s system 94% cpu 4.321 total
|
||||
import Fix
|
||||
|
||||
bool : Type
|
||||
bool = [C : Type] -> C -> C -> C
|
||||
|
||||
false : bool
|
||||
false = \[C]. \f.\t.f
|
||||
true : bool
|
||||
true = \[C]. \f.\t.t
|
||||
|
||||
nat : Type
|
||||
nat = [C : Type] -> C -> (nat -> C) -> C
|
||||
zero : nat
|
||||
zero = \[C].\z.\s.z
|
||||
succ : nat -> nat
|
||||
succ = \n.\[C].\z.\s. s n
|
||||
one : nat
|
||||
one = succ zero
|
||||
two : nat
|
||||
two = succ one
|
||||
three : nat
|
||||
three = succ two
|
||||
isZero : nat -> bool
|
||||
isZero = \n.n [bool] true (\m.false)
|
||||
const : [A:Type] -> A -> A -> A
|
||||
const = \[A].\x.\y.x
|
||||
prod : Type -> Type -> Type
|
||||
prod = \A B. [C:Type] -> (A -> B -> C) -> C
|
||||
pair : [A :Type] -> [B: Type] -> A -> B -> prod A B
|
||||
pair = \[A][B] a b. \[C] p. p a b
|
||||
fst : [A:Type] -> [B:Type] -> prod A B -> A
|
||||
fst = \[A][B] ab. ab [A] (\a.\b.a)
|
||||
snd : [A:Type] -> [B:Type] -> prod A B -> B
|
||||
snd = \[A][B] ab.ab [B] (\a.\b.b)
|
||||
add : nat -> nat -> nat
|
||||
add = fix [nat -> nat -> nat]
|
||||
\radd . \x.\y. x [nat] y (\ n. succ (radd n y))
|
||||
mul : nat -> nat -> nat
|
||||
mul = fix [nat -> nat -> nat]
|
||||
\rmul. \x.\y. x [nat] zero (\ n. add y (rmul n y))
|
||||
fac : nat -> nat
|
||||
fac = fix [nat -> nat]
|
||||
\rfac. \x. x [nat] one (\ n. mul x (rfac n))
|
||||
eqnat : nat -> nat -> bool
|
||||
eqnat = fix [nat -> nat -> bool]
|
||||
\reqnat. \x. \y.
|
||||
x [bool]
|
||||
(y [bool] true (\b.false))
|
||||
(\x1.y [bool] false (\y1. reqnat x1 y1))
|
||||
sumto : nat -> nat
|
||||
sumto = fix [nat -> nat]
|
||||
\rsumto. \x. x [nat] zero (\n. add x (rsumto n))
|
||||
n5 : nat
|
||||
n5 = add two three
|
||||
n6 : nat
|
||||
n6 = add three three
|
||||
n17 : nat
|
||||
n17 = add n6 (add n6 n5)
|
||||
n37 : nat
|
||||
n37 = succ (mul n6 n6)
|
||||
n703 : nat
|
||||
n703 = sumto n37
|
||||
n720 : nat
|
||||
n720 = fac n6
|
||||
|
||||
t : (eqnat n720 (add n703 n17)) = true
|
||||
t = Refl
|
||||
Reference in New Issue
Block a user