updates to playground help/comments

This commit is contained in:
2025-12-29 09:49:07 -08:00
parent 391b9092b4
commit 3abd18ce48
2 changed files with 19 additions and 20 deletions

View File

@@ -1,48 +1,47 @@
module Reasoning module Reasoning
infix 4 _≡_ -- From the "Lists" chapter of Programming Language Foundations in Agda
data _≡_ : {A : U} A A U where -- https://plfa.github.io/Lists/
Refl : A. {x : A} x x
sym : A. {x y : A} x y y x -- We define a few types and functions on lists and prove a couple of properties
-- about them. This example demonstrates mixfix operators.
infix 4 _≡_
data _≡_ : A. A A U where
Refl : A. {0 x : A} x x
sym : A. {0 x y : A} x y y x
sym Refl = Refl sym Refl = Refl
trans : A. {x y z : A} x y y z x z trans : A. {0 x y z : A} x y y z x z
trans Refl eq = eq trans Refl eq = eq
cong : A B. (f : A B) {x y : A} cong : A B. (0 f : A B) {0 x y : A}
x y x y
f x f y f x f y
cong f Refl = Refl cong f Refl = Refl
cong-app : A B. {f g : A B} cong-app : A B. {0 f g : A B}
f g f g
(x : A) f x g x (0 x : A) f x g x
cong-app Refl = λ y => Refl cong-app Refl = λ y => Refl
infixl 1 begin_ infixl 1 begin_
infixr 2 _≡⟨⟩_ _≡⟨_⟩_ infixr 2 _≡⟨⟩_ _≡⟨_⟩_
infixl 3 _∎ infixl 3 _∎
begin_ : A. {x y : A} x y x y begin_ : A. {0 x y : A} x y x y
begin x≡y = x≡y begin x≡y = x≡y
_≡⟨⟩_ : A. (x : A) {y : A} x y x y _≡⟨⟩_ : A. (0 x : A) {0 y : A} x y x y
x ≡⟨⟩ x≡y = x≡y x ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : A. (x : A) {y z : A} x y y z x z _≡⟨_⟩_ : A. (0 x : A) {0 y z : A} x y y z x z
x ≡⟨ x≡y y≡z = trans x≡y y≡z x ≡⟨ x≡y y≡z = trans x≡y y≡z
_∎ : A. (x : A) x x _∎ : A. (0 x : A) x x
x = Refl x = Refl
-- From the "Lists" chapter of Programming Language Foundations in Agda
-- https://plfa.github.io/Lists/
-- We define a few types and functions on lists and prove a couple of properties
-- about them
-- Natural numbers are zero (Z) or the successor (S) of a natural number -- Natural numbers are zero (Z) or the successor (S) of a natural number
-- We'll use these to represent the length of lists -- We'll use these to represent the length of lists
data Nat : U where data Nat : U where

View File

@@ -2,7 +2,7 @@
Newt is a dependent typed programming language that compiles to javascript. This playground embeds the newt compiler and a codemirror based editor. Newt is a dependent typed programming language that compiles to javascript. This playground embeds the newt compiler and a codemirror based editor.
The editor will typecheck the file with newt and render errors as the file is changed. The current file is saved to localStorage and will be restored if there is no data in the URL. Cmd-s or Ctrl-s will create a url embedding the file contents. There is a layout toggle for phone use. The editor will typecheck the file with newt and render errors as the file is changed. The current file is saved to localStorage and will be restored if there is no data in the URL. Cmd-s or Ctrl-s will create a url embedding the file contents.
## Tabs ## Tabs