Update Combinatory.newt, fix parse error
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
module Combinatory
|
||||
|
||||
-- "A correct-by-construction conversion from lambda calculus to combinatory logic", Wouter Swierstra
|
||||
-- prj/menagerie/papers/combinatory
|
||||
|
||||
data Unit : U where
|
||||
MkUnit : Unit
|
||||
@@ -10,8 +11,6 @@ data List : U -> U where
|
||||
Nil : {A : U} -> List A
|
||||
_::_ : {A : U} -> A -> List A -> List A
|
||||
|
||||
-- prj/menagerie/papers/combinatory
|
||||
|
||||
infixr 6 _~>_
|
||||
data Type : U where
|
||||
ι : Type
|
||||
@@ -41,23 +40,17 @@ data Env : Ctx -> U where
|
||||
ENil : Env Nil
|
||||
_:::_ : {Γ : Ctx} {σ : Type} → Val σ → Env Γ → Env (σ :: Γ)
|
||||
|
||||
-- TODO there is a problem here with coverage checking
|
||||
-- I suspect something is being split before it's ready
|
||||
lookup : {σ : Type} {Γ : Ctx} → Ref σ Γ → Env Γ → Val σ
|
||||
lookup Here (x ::: y) = x
|
||||
lookup () ENil
|
||||
lookup (There i) (x ::: env) = lookup i env
|
||||
|
||||
-- lookup : {σ : Type} {Γ : Ctx} → Ref σ Γ → Env Γ → Val σ
|
||||
-- lookup Here (x ::: y) = x
|
||||
-- lookup (There i) (x ::: env) = lookup i env
|
||||
|
||||
lookup2 : {σ : Type} {Γ : Ctx} → Env Γ → Ref σ Γ → Val σ
|
||||
lookup2 (x ::: y) Here = x
|
||||
lookup2 (x ::: env) (There i) = lookup2 env i
|
||||
|
||||
-- TODO MixFix - this was ⟦_⟧
|
||||
eval : {Γ : Ctx} {σ : Type} → Term Γ σ → (Env Γ → Val σ)
|
||||
infixl 1 ⟦_⟧
|
||||
⟦_⟧ : {Γ : Ctx} {σ : Type} → Term Γ σ → (Env Γ → Val σ)
|
||||
-- there was a unification error in direct application
|
||||
eval (App t u) env = (eval t env) (eval u env)
|
||||
eval (Lam t) env = \ x => eval t (x ::: env)
|
||||
eval (Var i) env = lookup2 env i
|
||||
⟦ App t u ⟧ env = (⟦ t ⟧ env) (⟦ u ⟧ env)
|
||||
⟦ Lam t ⟧ env = \ x => ⟦ t ⟧ (x ::: env)
|
||||
⟦ Var i ⟧ env = lookup i env
|
||||
|
||||
data Comb : (Γ : Ctx) → (u : Type) → (Env Γ → Val u) → U where
|
||||
S : {Γ : Ctx} {σ τ τ' : Type} → Comb Γ ((σ ~> τ ~> τ') ~> (σ ~> τ) ~> (σ ~> τ')) (\ env => \ f g x => (f x) (g x))
|
||||
@@ -65,7 +58,7 @@ data Comb : (Γ : Ctx) → (u : Type) → (Env Γ → Val u) → U where
|
||||
I : {Γ : Ctx} {σ : Type} → Comb Γ (σ ~> σ) (\ env => \ x => x)
|
||||
B : {Γ : Ctx} {σ τ τ' : Type} → Comb Γ ((τ ~> τ') ~> (σ ~> τ) ~> (σ ~> τ')) (\ env => \ f g x => f (g x))
|
||||
C : {Γ : Ctx} {σ τ τ' : Type} → Comb Γ ((σ ~> τ ~> τ') ~> τ ~> (σ ~> τ')) (\ env => \ f g x => (f x) g)
|
||||
CVar : {Γ : Ctx} {σ : Type} → (i : Ref σ Γ) → Comb Γ σ (\ env => lookup2 env i)
|
||||
CVar : {Γ : Ctx} {σ : Type} → (i : Ref σ Γ) → Comb Γ σ (\ env => lookup i env)
|
||||
CApp : {Γ : Ctx} {σ τ : Type} {f : _} {x : _} → Comb Γ (σ ~> τ) f → Comb Γ σ x → Comb Γ τ (\ env => (f env) (x env))
|
||||
|
||||
sapp : {Γ : Ctx} {σ τ ρ : Type} {f : _} {x : _} →
|
||||
@@ -86,11 +79,12 @@ abs I = CApp K I
|
||||
abs B = CApp K B
|
||||
abs C = CApp K C
|
||||
abs (CApp t u) = sapp (abs t) (abs u)
|
||||
-- lookup2 was getting stuck, needed to re-eval the types in the rewritten env.
|
||||
-- lookup was getting stuck, needed to re-eval the types in the rewritten env.
|
||||
abs (CVar Here) = I
|
||||
abs (CVar (There i)) = CApp K (CVar i)
|
||||
|
||||
translate : {Γ : Ctx} {σ : Type} → (tm : Term Γ σ) → Comb Γ σ (eval tm)
|
||||
-- Was a bug in pratt parser when argument `⟦ tm ⟧` had a prefix operator
|
||||
translate : {Γ : Ctx} {σ : Type} → (tm : Term Γ σ) → Comb Γ σ ⟦ tm ⟧
|
||||
translate (App t u) = CApp (translate t) (translate u)
|
||||
translate (Lam t) = abs (translate t)
|
||||
translate (Var i) = CVar i
|
||||
|
||||
@@ -1,48 +0,0 @@
|
||||
module Problem
|
||||
|
||||
-- partial finished translation of "A correct-by-construction conversion from lambda calculus to combinatory logic", by Wouter Swierstra
|
||||
-- added as a test of impossible clauses (in `lookup` below)
|
||||
-- prj/menagerie/papers/combinatory
|
||||
|
||||
data Unit : U where
|
||||
MkUnit : Unit
|
||||
|
||||
infixr 7 _::_
|
||||
data List : U → U where
|
||||
Nil : {A : U} → List A
|
||||
_::_ : {A : U} → A → List A → List A
|
||||
|
||||
infixr 6 _~>_
|
||||
data Type : U where
|
||||
ι : Type
|
||||
_~>_ : Type → Type → Type
|
||||
|
||||
A : U
|
||||
A = Unit
|
||||
|
||||
Val : Type → U
|
||||
Val ι = A
|
||||
Val (x ~> y) = Val x → Val y
|
||||
|
||||
Ctx : U
|
||||
Ctx = List Type
|
||||
|
||||
data Ref : Type → Ctx → U where
|
||||
Z : {σ : Type} {Γ : Ctx} → Ref σ (σ :: Γ)
|
||||
S : {σ τ : Type} {Γ : Ctx} → Ref σ Γ → Ref σ (τ :: Γ)
|
||||
|
||||
data Term : Ctx → Type → U where
|
||||
App : {Γ : Ctx} {σ τ : Type} → Term Γ (σ ~> τ) → Term Γ σ → Term Γ τ
|
||||
Lam : {Γ : Ctx} {σ τ : Type} → Term (σ :: Γ) τ → Term Γ (σ ~> τ)
|
||||
Var : {Γ : Ctx} {σ : Type} → Ref σ Γ → Term Γ σ
|
||||
|
||||
infixr 7 _:::_
|
||||
data Env : Ctx → U where
|
||||
ENil : Env Nil
|
||||
_:::_ : {Γ : Ctx} {σ : Type} → Val σ → Env Γ → Env (σ :: Γ)
|
||||
|
||||
-- due to the order that we match constructors, we need the impossible clause here
|
||||
lookup : {σ : Type} {Γ : Ctx} → Ref σ Γ → Env Γ → Val σ
|
||||
lookup Z (x ::: y) = x
|
||||
lookup () ENil
|
||||
lookup (S i) (x ::: env) = lookup i env
|
||||
Reference in New Issue
Block a user