implicits working, but _slow_
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -1,2 +1,4 @@
|
||||
build/
|
||||
*.*~ATTIC
|
||||
\#*
|
||||
*~
|
||||
|
||||
5
Makefile
5
Makefile
@@ -1,9 +1,12 @@
|
||||
SRCS=$(shell find src -name "*.idr")
|
||||
|
||||
all: build/exec/newt
|
||||
all: build/exec/newt build/exec/newt.js
|
||||
|
||||
build/exec/newt: ${SRCS}
|
||||
idris2 --build newt.ipkg
|
||||
|
||||
build/exec/newt.js: ${SRCS}
|
||||
idris2 --cg node -o newt.js -p contrib -c src/Main.idr
|
||||
|
||||
test: build/exec/newt
|
||||
build/exec/newt newt/*.newt
|
||||
|
||||
@@ -24,7 +24,12 @@ Idris does a common array for metas and defs.
|
||||
|
||||
|
||||
|
||||
Something exponential is going on with zoo3.newt. Adding code makes it quickly worse.
|
||||
|
||||
|
||||
Parser:
|
||||
- [x] unify broken for zoo3 `cons`
|
||||
- [ ] parser for block comments
|
||||
- [x] import statement
|
||||
- [x] def
|
||||
- [x] simple decl
|
||||
|
||||
@@ -5,3 +5,52 @@ id = \ A x => x
|
||||
|
||||
List : U -> U
|
||||
List = \ A => (L : _) -> (A -> L -> L) -> L -> L
|
||||
|
||||
nil : (A : _) -> List A
|
||||
nil = \ A L cons nil => nil
|
||||
|
||||
cons : (A : _) -> A -> List A -> List A
|
||||
cons = \A x xs L cons nil => cons x (xs _ cons nil)
|
||||
|
||||
Bool : U
|
||||
Bool = (B : _) -> B -> B -> B
|
||||
|
||||
true : Bool
|
||||
true = \ B t f => t
|
||||
|
||||
false : Bool
|
||||
false = \ B t f => f
|
||||
|
||||
not : Bool -> Bool
|
||||
not = \ b B t f => b B f t
|
||||
|
||||
Eq : (A : _) -> A -> A -> U
|
||||
Eq = \A x y => (P : A -> U) -> P x -> P y
|
||||
|
||||
refl : (A : _) (x : A) -> Eq A x x
|
||||
refl = \ A x p px => px
|
||||
|
||||
list1 : List Bool
|
||||
list1 = cons _ true (cons _ false (nil _))
|
||||
|
||||
-- 9 sec
|
||||
|
||||
|
||||
Nat : U
|
||||
Nat = (N : U) -> (N -> N) -> N -> N
|
||||
|
||||
-- 30 sec
|
||||
|
||||
-- five : Nat
|
||||
-- five = \ N s z => s (s (s (s (s z))))
|
||||
|
||||
-- add : Nat -> Nat -> Nat
|
||||
-- add = \ a b N s z => a N s (b N s z)
|
||||
|
||||
-- Add the rest
|
||||
|
||||
|
||||
-- unify (%pi _ E (%var 3 []) (%cl [(%var 6 []), (%var 3 []), (%var 0 []), (%var 2 []), (%var 1 []), (%var 0 [])] (Bnd 2))) with
|
||||
-- (%pi _ E (%var 2 []) (%cl [(%var 6 []), (%var 2 []), (%var 0 []), (%var 1 []), (%var 0 [])] (Bnd 2)))
|
||||
-- -> (%pi _ E (%var 3 []) (%cl [(%var 6 []), (%var 3 []), (%var 0 []), (%var 2 []), (%var 1 []), (%var 0 [])] (Bnd 2))) with
|
||||
-- (%pi _ E (%var 2 []) (%cl [(%var 6 []), (%var 2 []), (%var 0 []), (%var 1 []), (%var 0 [])] (Bnd 2)))
|
||||
|
||||
@@ -7,6 +7,7 @@ import Lib.Prettier
|
||||
import Data.List
|
||||
import Data.Vect
|
||||
import Data.String
|
||||
import Lib.Types
|
||||
import Lib.TT
|
||||
import Lib.TopContext
|
||||
import Syntax
|
||||
@@ -16,29 +17,21 @@ import Syntax
|
||||
data PRen = PR Nat Nat (List Nat)
|
||||
|
||||
-- IORef for metas needs IO
|
||||
parameters {0 m : Type -> Type} {auto _ : HasIO m} {auto _ : MonadError Error m} (top : TopContext)
|
||||
|
||||
-- unify : Nat -> Val -> Val -> m ()
|
||||
-- unify l (VLam _ _ t) (VLam _ _ u) = unify (l + 1) (t $$ VVar l) (u $$ VVar l)
|
||||
-- unify l t (VLam _ _ u) = unify (l + 1) (vapp t (VVar l)) (u $$ VVar l)
|
||||
-- unify l (VVar k) u = ?unify_rhs_0
|
||||
-- unify l (VRef str mt) u = ?unify_rhs_1
|
||||
-- unify l (VMeta k) u = ?unify_rhs_2
|
||||
-- unify l (VApp x y) u = ?unify_rhs_3
|
||||
-- unify l (VPi str icit x y) u = ?unify_rhs_5
|
||||
-- unify l VU u = ?unify_rhs_6
|
||||
|
||||
forceMeta : Val -> Val
|
||||
forceMeta : Val -> M Val
|
||||
-- TODO - need to look up metas
|
||||
forceMeta x = x
|
||||
forceMeta (VMeta ix sp) = case !(lookupMeta ix) of
|
||||
(Unsolved k xs) => pure (VMeta ix sp)
|
||||
(Solved k t) => vappSpine t sp
|
||||
forceMeta x = pure x
|
||||
|
||||
-- return renaming, the position is the new VVar
|
||||
invert : Nat -> List Val -> m (List Nat)
|
||||
invert : Nat -> SnocList Val -> M (List Nat)
|
||||
invert lvl sp = go sp []
|
||||
where
|
||||
go : List Val -> List Nat -> m (List Nat)
|
||||
go [] acc = pure acc
|
||||
go ((VVar k []) :: xs) acc = do
|
||||
go : SnocList Val -> List Nat -> M (List Nat)
|
||||
go [<] acc = pure $ reverse acc
|
||||
go (xs :< VVar k [<]) acc = do
|
||||
if elem k acc
|
||||
then throwError $ E (0,0) "non-linear pattern"
|
||||
else go xs (k :: acc)
|
||||
@@ -47,13 +40,13 @@ parameters {0 m : Type -> Type} {auto _ : HasIO m} {auto _ : MonadError Error m}
|
||||
-- we have to "lift" the renaming when we go under a lambda
|
||||
-- I think that essentially means our domain ix are one bigger, since we're looking at lvl
|
||||
-- in the codomain, so maybe we can just keep that value
|
||||
rename : Nat -> List Nat -> Nat -> Val -> m Tm
|
||||
rename : Nat -> List Nat -> Nat -> Val -> M Tm
|
||||
rename meta ren lvl v = go ren lvl v
|
||||
where
|
||||
go : List Nat -> Nat -> Val -> m Tm
|
||||
goSpine : List Nat -> Nat -> Tm -> List Val -> m Tm
|
||||
goSpine ren lvl tm [] = pure tm
|
||||
goSpine ren lvl tm (x :: xs) = do
|
||||
go : List Nat -> Nat -> Val -> M Tm
|
||||
goSpine : List Nat -> Nat -> Tm -> SnocList Val -> M Tm
|
||||
goSpine ren lvl tm [<] = pure tm
|
||||
goSpine ren lvl tm (xs :< x) = do
|
||||
xtm <- go ren lvl x
|
||||
goSpine ren lvl (App tm xtm) xs
|
||||
|
||||
@@ -64,35 +57,40 @@ parameters {0 m : Type -> Type} {auto _ : HasIO m} {auto _ : MonadError Error m}
|
||||
go ren lvl (VMeta ix sp) = if ix == meta
|
||||
then throwError $ E (0,0) "meta occurs check"
|
||||
else goSpine ren lvl (Meta ix) sp
|
||||
go ren lvl (VLam n icit t) = pure (Lam n icit !(go (lvl :: ren) (S lvl) (t $$ VVar lvl [])))
|
||||
go ren lvl (VPi n icit ty tm) = pure (Pi n icit !(go ren lvl ty) !(go (lvl :: ren) (S lvl) (tm $$ VVar lvl [])))
|
||||
go ren lvl (VLam n icit t) = pure (Lam n icit !(go (lvl :: ren) (S lvl) !(t $$ VVar lvl [<])))
|
||||
go ren lvl (VPi n icit ty tm) = pure (Pi n icit !(go ren lvl ty) !(go (lvl :: ren) (S lvl) !(tm $$ VVar lvl [<])))
|
||||
go ren lvl VU = pure U
|
||||
|
||||
-- lams : Nat -> Tm -> Tm
|
||||
-- lams 0 tm = tm
|
||||
-- lams (S k) tm = Lam
|
||||
lams : Nat -> Tm -> Tm
|
||||
lams 0 tm = tm
|
||||
lams (S k) tm = Lam "arg\{show k}" Explicit (lams k tm)
|
||||
|
||||
solve : Nat -> Nat -> List Val -> Val -> m ()
|
||||
solve : Nat -> Nat -> SnocList Val -> Val -> M ()
|
||||
solve l m sp t = do
|
||||
ren <- invert l sp
|
||||
tm <- rename m ren l t
|
||||
printLn "solution to \{show m} is \{show tm}"
|
||||
|
||||
let tm = lams (length sp) tm
|
||||
top <- get
|
||||
soln <- eval [] CBN tm
|
||||
solveMeta top m soln
|
||||
pure ()
|
||||
|
||||
unify : (l : Nat) -> Val -> Val -> m ()
|
||||
unify : (l : Nat) -> Val -> Val -> M ()
|
||||
|
||||
unifySpine : Nat -> Bool -> List Val -> List Val -> m ()
|
||||
unifySpine : Nat -> Bool -> SnocList Val -> SnocList Val -> M ()
|
||||
unifySpine l False _ _ = throwError $ E (0,0) "unify failed"
|
||||
unifySpine l True [] [] = pure ()
|
||||
unifySpine l True (x :: xs) (y :: ys) = unify l x y >> unifySpine l True xs ys
|
||||
unifySpine l True [<] [<] = pure ()
|
||||
unifySpine l True (xs :< x) (ys :< y) = unify l x y >> unifySpine l True xs ys
|
||||
unifySpine l True _ _ = throwError $ E (0,0) "meta spine length mismatch"
|
||||
|
||||
unify l t u = case (forceMeta t, forceMeta u) of
|
||||
(VLam _ _ t, VLam _ _ t' ) => unify (l + 1) (t $$ VVar l []) (t' $$ VVar l [])
|
||||
(t, VLam _ _ t' ) => unify (l + 1) (t `vapp` VVar l []) (t' $$ VVar l [])
|
||||
(VLam _ _ t, t' ) => unify (l + 1) (t $$ VVar l []) (t' `vapp` VVar l [])
|
||||
(VPi _ _ a b, VPi _ _ a' b') => unify l a a' >> unify (S l) (b $$ VVar l []) (b' $$ VVar l [])
|
||||
unify l t u = do
|
||||
t' <- forceMeta t
|
||||
u' <- forceMeta u
|
||||
case (t',u') of
|
||||
(VLam _ _ t, VLam _ _ t' ) => unify (l + 1) !(t $$ VVar l [<]) !(t' $$ VVar l [<])
|
||||
(t, VLam _ _ t' ) => unify (l + 1) !(t `vapp` VVar l [<]) !(t' $$ VVar l [<])
|
||||
(VLam _ _ t, t' ) => unify (l + 1) !(t $$ VVar l [<]) !(t' `vapp` VVar l [<])
|
||||
(VPi _ _ a b, VPi _ _ a' b') => unify l a a' >> unify (S l) !(b $$ VVar l [<]) !(b' $$ VVar l [<])
|
||||
(VVar k sp, VVar k' sp' ) => unifySpine l (k == k') sp sp'
|
||||
(VRef n sp, VRef n' sp' ) => unifySpine l (n == n') sp sp'
|
||||
(VMeta i sp, VMeta i' sp' ) => unifySpine l (i == i') sp sp'
|
||||
@@ -104,19 +102,19 @@ parameters {0 m : Type -> Type} {auto _ : HasIO m} {auto _ : MonadError Error m}
|
||||
|
||||
|
||||
export
|
||||
infer : Context -> Raw -> m (Tm, Val)
|
||||
infer : Context -> Raw -> M (Tm, Val)
|
||||
|
||||
export
|
||||
check : Context -> Raw -> Val -> m Tm
|
||||
check : Context -> Raw -> Val -> M Tm
|
||||
check ctx (RSrcPos x tm) ty = check ({pos := x} ctx) tm ty
|
||||
check ctx (RLam nm icit tm) ty = case ty of
|
||||
(VPi pinm icit a b) => do
|
||||
-- TODO icit
|
||||
let var = VVar (length ctx.env) []
|
||||
let var = VVar (length ctx.env) [<]
|
||||
let ctx' = extend ctx nm a
|
||||
tm' <- check ctx' tm (b $$ var)
|
||||
tm' <- check ctx' tm !(b $$ var)
|
||||
pure $ Lam nm icit tm'
|
||||
other => error [(DS "Expected pi type, got \{show $ quote 0 ty}")]
|
||||
other => error [(DS "Expected pi type, got \{show !(quote 0 ty)}")]
|
||||
check ctx tm ty = do
|
||||
(tm', ty') <- infer ctx tm
|
||||
-- This is where the conversion check / pattern unification go
|
||||
@@ -125,12 +123,13 @@ parameters {0 m : Type -> Type} {auto _ : HasIO m} {auto _ : MonadError Error m}
|
||||
-- error [DS "type mismatch got", DD (quote 0 ty'), DS "expected", DD (quote 0 ty)]
|
||||
-- else pure tm'
|
||||
pure tm'
|
||||
|
||||
infer ctx (RVar nm) = go 0 ctx.types
|
||||
where
|
||||
go : Nat -> Vect n (String, Val) -> m (Tm, Val)
|
||||
go i [] = case lookup nm top of
|
||||
Just (MkEntry name ty (Fn t)) => pure (Ref nm (Just t), eval [] CBN ty)
|
||||
Just (MkEntry name ty _) => pure (Ref nm Nothing, eval [] CBN ty)
|
||||
go : Nat -> Vect n (String, Val) -> M (Tm, Val)
|
||||
go i [] = case lookup nm !(get) of
|
||||
Just (MkEntry name ty (Fn t)) => pure (Ref nm (Just t), !(eval [] CBN ty))
|
||||
Just (MkEntry name ty _) => pure (Ref nm Nothing, !(eval [] CBN ty))
|
||||
Nothing => error [DS "\{show nm} not in scope"]
|
||||
go i ((x, ty) :: xs) = if x == nm then pure $ (Bnd i, ty)
|
||||
else go (i + 1) xs
|
||||
@@ -141,27 +140,27 @@ parameters {0 m : Type -> Type} {auto _ : HasIO m} {auto _ : MonadError Error m}
|
||||
case tty of
|
||||
(VPi str icit' a b) => do
|
||||
u <- check ctx u a
|
||||
pure (App t u, b $$ eval ctx.env CBN t)
|
||||
pure (App t u, !(b $$ !(eval ctx.env CBN u)))
|
||||
_ => error [DS "Expected Pi type"]
|
||||
infer ctx RU = pure (U, VU) -- YOLO
|
||||
infer ctx (RPi nm icit ty ty2) = do
|
||||
ty' <- check ctx ty VU
|
||||
let vty' := eval ctx.env CBN ty'
|
||||
vty' <- eval ctx.env CBN ty'
|
||||
let nm := fromMaybe "_" nm
|
||||
ty2' <- check (extend ctx nm vty') ty2 VU
|
||||
pure (Pi nm icit ty' ty2', VU)
|
||||
infer ctx (RLet str tm tm1 tm2) = ?rhs_5
|
||||
infer ctx (RLet str tm tm1 tm2) = error [DS "implement RLet"]
|
||||
infer ctx (RSrcPos x tm) = infer ({pos := x} ctx) tm
|
||||
infer ctx (RAnn tm rty) = do
|
||||
ty <- check ctx rty VU
|
||||
let vty = eval ctx.env CBN ty
|
||||
vty <- eval ctx.env CBN ty
|
||||
tm <- check ctx tm vty
|
||||
pure (tm, vty)
|
||||
|
||||
infer ctx (RLam str icit tm) = error [DS "can't infer lambda"]
|
||||
infer ctx RHole = do
|
||||
ty <- freshMeta ctx
|
||||
let vty = eval ctx.env CBN ty
|
||||
vty <- eval ctx.env CBN ty
|
||||
tm <- freshMeta ctx
|
||||
pure (tm, vty)
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
module Lib.Parser
|
||||
import Lib.TT
|
||||
import Lib.Types
|
||||
|
||||
-- The SourcePos stuff is awkward later on. We might want bounds on productions
|
||||
-- But we might want to consider something more generic and closer to lean?
|
||||
@@ -241,9 +241,14 @@ parseData = do
|
||||
-- TODO - turn decls into something more useful
|
||||
pure $ Data name ty decls
|
||||
|
||||
-- Not sure what I want here.
|
||||
-- I can't get a Tm without a type, and then we're covered by the other stuff
|
||||
parseNorm : Parser Decl
|
||||
parseNorm = DCheck <$ keyword "#check" <*> typeExpr <* keyword ":" <*> typeExpr
|
||||
|
||||
export
|
||||
parseDecl : Parser Decl
|
||||
parseDecl = parseImport <|> parseSig <|> parseDef <|> parseData
|
||||
parseDecl = parseImport <|> parseSig <|> parseDef <|> parseNorm <|> parseData
|
||||
|
||||
export
|
||||
parseMod : Parser Module
|
||||
|
||||
439
src/Lib/TT.idr
439
src/Lib/TT.idr
@@ -7,7 +7,7 @@ module Lib.TT
|
||||
-- For SourcePos
|
||||
import Lib.Parser.Impl
|
||||
import Lib.Prettier
|
||||
|
||||
import Lib.Types
|
||||
import Control.Monad.Error.Interface
|
||||
|
||||
import Data.IORef
|
||||
@@ -16,302 +16,7 @@ import Data.List
|
||||
import Data.Vect
|
||||
import Data.SortedMap
|
||||
|
||||
public export
|
||||
Name : Type
|
||||
Name = String
|
||||
|
||||
public export
|
||||
data Icit = Implicit | Explicit
|
||||
|
||||
%name Icit icit
|
||||
|
||||
public export
|
||||
data BD = Bound | Defined
|
||||
|
||||
|
||||
public export
|
||||
data Tm : Type where
|
||||
Bnd : Nat -> Tm
|
||||
-- Maybe Def here instead of Maybe Tm, we'll have DCon, TCon, etc.
|
||||
Ref : String -> Maybe Tm -> Tm
|
||||
Meta : Nat -> Tm
|
||||
-- kovacs optimization, I think we can App out meta instead
|
||||
-- InsMeta : Nat -> List BD -> Tm
|
||||
Lam : Name -> Icit -> Tm -> Tm
|
||||
App : Tm -> Tm -> Tm
|
||||
U : Tm
|
||||
Pi : Name -> Icit -> Tm -> Tm -> Tm
|
||||
Let : Name -> Icit -> Tm -> Tm -> Tm -> Tm
|
||||
|
||||
%name Tm t, u, v
|
||||
|
||||
public export
|
||||
Show Tm where
|
||||
show (Bnd k) = "(Bnd \{show k})"
|
||||
show (Ref str _) = "(Ref \{show str})"
|
||||
show (Lam nm Implicit t) = "(λ {\{nm}} => \{show t})"
|
||||
show (Lam nm Explicit t) = "(λ \{nm} => \{show t})"
|
||||
show (App t u) = "(\{show t} \{show u})"
|
||||
show (Meta i) = "(Meta \{show i})"
|
||||
show U = "U"
|
||||
show (Pi str icit t u) = "(∏ \{str} : \{show t} => \{show u})"
|
||||
show (Let str icit t u v) = "let \{str} : \{show t} = \{show u} in \{show v}"
|
||||
|
||||
-- I can't really show val because it's HOAS...
|
||||
|
||||
-- TODO derive
|
||||
export
|
||||
Eq Icit where
|
||||
Implicit == Implicit = True
|
||||
Explicit == Explicit = True
|
||||
_ == _ = False
|
||||
|
||||
||| Eq on Tm. We've got deBruijn indices, so I'm not comparing names
|
||||
export
|
||||
Eq (Tm) where
|
||||
-- (Local x) == (Local y) = x == y
|
||||
(Bnd x) == (Bnd y) = x == y
|
||||
(Ref x _) == (Ref y _) = x == y
|
||||
(Lam n icit t) == (Lam n' icit' t') = icit == icit' && t == t'
|
||||
(App t u) == App t' u' = t == t' && u == u'
|
||||
U == U = True
|
||||
(Pi n icit t u) == (Pi n' icit' t' u') = icit == icit' && t == t' && u == u'
|
||||
(Let n icit t u v) == (Let n' icit' t' u' v') = t == t' && u == u' && v == v'
|
||||
_ == _ = False
|
||||
|
||||
public export
|
||||
Pretty Tm where
|
||||
pretty (Bnd k) = ?rhs_0
|
||||
pretty (Ref str mt) = text str
|
||||
pretty (Meta k) = text "?m\{show k}"
|
||||
pretty (Lam str Implicit t) = text "(\\ {\{str}} => " <+> pretty t <+> ")"
|
||||
pretty (Lam str Explicit t) = text "(\\ \{str} => " <+> pretty t <+> ")"
|
||||
pretty (App t u) = text "(" <+> pretty t <+> pretty u <+> ")"
|
||||
pretty U = "U"
|
||||
pretty (Pi str icit t u) = text "(" <+> text str <+> ":" <+> pretty t <+> "=>" <+> pretty u <+> ")"
|
||||
pretty (Let str icit t u v) = text "let" <+> text str <+> ":" <+> pretty t <+> "=" <+> pretty u
|
||||
|
||||
-- public export
|
||||
-- data Closure : Nat -> Type
|
||||
data Val : Type
|
||||
|
||||
|
||||
-- IS/TypeTheory.idr is calling this a Kripke function space
|
||||
-- Yaffle, IS/TypeTheory use a function here.
|
||||
-- Kovacs, Idris use Env and Tm
|
||||
|
||||
-- in cctt kovacs refers to this choice as defunctionalization vs HOAS
|
||||
-- https://github.com/AndrasKovacs/cctt/blob/main/README.md#defunctionalization
|
||||
-- the tradeoff is access to internals of the function
|
||||
|
||||
-- Yaffle is vars -> vars here
|
||||
|
||||
|
||||
public export
|
||||
data Closure : Type
|
||||
|
||||
public export
|
||||
data Val : Type where
|
||||
-- This will be local / flex with spine.
|
||||
VVar : (k : Nat) -> (sp : List Val) -> Val
|
||||
-- I wanted the Maybe Tm in here, but for now we're always expanding.
|
||||
-- Maybe this is where I glue
|
||||
VRef : (nm : String) -> (sp : List Val) -> Val
|
||||
-- we'll need to look this up in ctx with IO
|
||||
VMeta : (ix : Nat) -> (sp : List Val) -> Val
|
||||
VLam : Name -> Icit -> Closure -> Val
|
||||
VPi : Name -> Icit -> Lazy Val -> Closure -> Val
|
||||
VU : Val
|
||||
|
||||
public export
|
||||
Env : Type
|
||||
Env = List Val
|
||||
|
||||
public export
|
||||
data Mode = CBN | CBV
|
||||
|
||||
export
|
||||
eval : Env -> Mode -> Tm -> Val
|
||||
|
||||
data Closure = MkClosure Env Tm
|
||||
|
||||
public export
|
||||
($$) : {auto mode : Mode} -> Closure -> Val -> Val
|
||||
($$) (MkClosure env tm) u = eval (u :: env) mode tm
|
||||
|
||||
public export
|
||||
infixl 8 $$
|
||||
|
||||
export
|
||||
vapp : Val -> Val -> Val
|
||||
vapp (VLam _ icit t) u = t $$ u
|
||||
vapp (VVar k sp) u = VVar k (u :: sp)
|
||||
vapp (VRef nm sp) u = VRef nm (u :: sp)
|
||||
vapp (VMeta k sp) u = VMeta k (u :: sp)
|
||||
vapp _ _ = ?throw_impossible
|
||||
|
||||
bind : Val -> Env -> Env
|
||||
bind v env = v :: env
|
||||
|
||||
-- Do we want a def in here instead? We'll need DCon/TCon eventually
|
||||
-- I need to be aggressive about reduction, I guess. I'll figure it out
|
||||
-- later, maybe need lazy glued values.
|
||||
eval env mode (Ref x (Just tm)) = eval env mode tm
|
||||
eval env mode (Ref x Nothing) = VRef x []
|
||||
eval env mode (App (Ref x (Just tm)) u) = vapp (eval env mode tm) (eval env mode u)
|
||||
eval env mode (App t u) = vapp (eval env mode t) (eval env mode u)
|
||||
eval env mode U = VU
|
||||
eval env mode (Meta i) = VMeta i []
|
||||
eval env mode (Lam x icit t) = VLam x icit (MkClosure env t)
|
||||
eval env mode (Pi x icit a b) = VPi x icit (eval env mode a) (MkClosure env b)
|
||||
eval env mode (Let x icit ty t u) = eval (eval env mode t :: env) mode u
|
||||
eval env mode (Bnd i) = let Just rval = getAt i env | _ => ?out_of_index
|
||||
in rval
|
||||
|
||||
export
|
||||
quote : (lvl : Nat) -> Val -> Tm
|
||||
|
||||
quoteSp : (lvl : Nat) -> Tm -> List Val -> Tm
|
||||
quoteSp lvl t [] = t
|
||||
quoteSp lvl t (x :: xs) = quoteSp lvl (App t (quote lvl x)) xs
|
||||
|
||||
quote l (VVar k sp) = quoteSp l (Bnd ((l `minus` k) `minus` 1)) sp -- level to index
|
||||
quote l (VMeta i sp) = quoteSp l (Meta i) sp
|
||||
quote l (VLam x icit t) = Lam x icit (quote (S l) (t $$ VVar l []))
|
||||
quote l (VPi x icit a b) = Pi x icit (quote l a) (quote (S l) (b $$ VVar l []))
|
||||
quote l VU = U
|
||||
quote l (VRef n sp) = quoteSp l (Ref n Nothing) sp
|
||||
|
||||
-- Can we assume closed terms?
|
||||
-- ezoo only seems to use it at [], but essentially does this:
|
||||
export
|
||||
nf : Env -> Tm -> Tm
|
||||
nf env t = quote (length env) (eval env CBN t)
|
||||
|
||||
|
||||
{-
|
||||
smalltt
|
||||
|
||||
smalltt gets into weird haskell weeds in eval - shifting top level to the left
|
||||
and tagging meta vs top with a bit.
|
||||
|
||||
I think something subtle is going on with laziness on Elaboration.hs:300
|
||||
yeah, and define is even inlined.
|
||||
|
||||
So it has a top context, and clears out almost everything for processing a def in
|
||||
a different kind of context.
|
||||
|
||||
we very much need an idea of local context for metas. I don't want to abstract over
|
||||
the entire program.
|
||||
|
||||
So I guess we have top and local then?
|
||||
|
||||
With haskell syntax. I think we can have Axiom for claims and rewrite to def later.
|
||||
|
||||
Hmm, so given ezoo, if I'm going simple, I could keep BDs short, and use the normal
|
||||
context. (Zoo4.lean:222) I'd probably still need an undefined/axiom marker as a value?
|
||||
|
||||
ok, so with just one context, Env is List Val and we're getting Tm back from type checking.
|
||||
|
||||
Can I get val back? Do we need to quote? What happens if we don't?
|
||||
|
||||
-}
|
||||
|
||||
-- FIXME remove List BD
|
||||
public export
|
||||
data MetaEntry = Unsolved Nat (List BD) | Solved Nat Val
|
||||
|
||||
public export
|
||||
record MetaContext where
|
||||
constructor MC
|
||||
metas : List MetaEntry
|
||||
next : Nat
|
||||
|
||||
|
||||
public export
|
||||
data Def = Axiom | TCon (List String) | DCon Nat | Fn Tm
|
||||
|
||||
Show Def where
|
||||
show Axiom = "axiom"
|
||||
show (TCon strs) = "TCon \{show strs}"
|
||||
show (DCon k) = "DCon \{show k}"
|
||||
show (Fn t) = "Fn \{show t}"
|
||||
|
||||
||| entry in the top level context
|
||||
public export
|
||||
record TopEntry where
|
||||
constructor MkEntry
|
||||
name : String
|
||||
type : Tm
|
||||
def : Def
|
||||
|
||||
-- FIXME snoc
|
||||
|
||||
export
|
||||
Show TopEntry where
|
||||
show (MkEntry name type def) = "\{name} : \{show type} := \{show def}"
|
||||
|
||||
||| Top level context.
|
||||
||| Most of the reason this is separate is to have a different type
|
||||
||| `Def` for the entries.
|
||||
|||
|
||||
||| The price is that we have names in addition to levels. Do we want to
|
||||
||| expand these during conversion?
|
||||
public export
|
||||
record TopContext where
|
||||
constructor MkTop
|
||||
-- We'll add a map later?
|
||||
defs : List TopEntry
|
||||
metas : IORef MetaContext
|
||||
-- metas : TODO
|
||||
|
||||
-- we'll use this for typechecking, but need to keep a TopContext around too.
|
||||
public export
|
||||
record Context where
|
||||
constructor MkCtx
|
||||
lvl : Nat
|
||||
-- shall we use lvl as an index?
|
||||
env : Env -- Values in scope
|
||||
types : Vect lvl (String, Val) -- types and names in scope
|
||||
-- so we'll try "bds" determines length of local context
|
||||
bds : List BD -- bound or defined
|
||||
pos : SourcePos -- the last SourcePos that we saw
|
||||
|
||||
-- We only need this here if we don't pass TopContext
|
||||
-- top : TopContext
|
||||
metas : IORef MetaContext
|
||||
|
||||
export
|
||||
freshMeta : HasIO m => Context -> m Tm
|
||||
freshMeta ctx = do
|
||||
mc <- readIORef ctx.metas
|
||||
writeIORef ctx.metas $ { next $= S, metas $= (Unsolved mc.next ctx.bds ::) } mc
|
||||
pure $ applyBDs 0 (Meta mc.next) ctx.bds
|
||||
where
|
||||
-- hope I got the right order here :)
|
||||
applyBDs : Nat -> Tm -> List BD -> Tm
|
||||
applyBDs k t [] = t
|
||||
applyBDs k t (Bound :: xs) = applyBDs (S k) (App t (Bnd k)) xs
|
||||
applyBDs k t (Defined :: xs) = applyBDs (S k) t xs
|
||||
|
||||
-- solveMeta : HasIO m => Context -> m Tm
|
||||
-- solveMeta ctx = do
|
||||
-- mc <- readIORef ctx.metas
|
||||
|
||||
|
||||
-- we need more of topcontext later - Maybe switch it up so we're not passing
|
||||
-- around top
|
||||
export
|
||||
mkCtx : IORef MetaContext -> Context
|
||||
mkCtx metas = MkCtx 0 [] [] [] (0,0) metas
|
||||
|
||||
export partial
|
||||
Show Context where
|
||||
show ctx = "Context \{show $ map fst $ ctx.types}"
|
||||
|
||||
-- TODO Pretty Context
|
||||
|
||||
-- idea cribbed from pi-forall
|
||||
-- Errors cribbed from pi-forall
|
||||
public export
|
||||
data ErrorSeg : Type where
|
||||
DD : Pretty a => a -> ErrorSeg
|
||||
@@ -322,15 +27,67 @@ toDoc (DD x) = pretty x
|
||||
toDoc (DS str) = text str
|
||||
|
||||
export
|
||||
error : {0 m : Type -> Type} -> {auto _ : MonadError Error m} ->
|
||||
{auto ctx : Context} -> List ErrorSeg -> m a
|
||||
error : {auto ctx : Context} -> List ErrorSeg -> M a
|
||||
error xs = throwError $ E ctx.pos (render 80 $ spread $ map toDoc xs)
|
||||
|
||||
export
|
||||
error' : String -> M a
|
||||
error' msg = throwError $ E (0,0) msg
|
||||
|
||||
|
||||
export
|
||||
freshMeta : Context -> M Tm
|
||||
freshMeta ctx = do
|
||||
mc <- readIORef ctx.metas
|
||||
writeIORef ctx.metas $ { next $= S, metas $= (Unsolved mc.next ctx.bds ::) } mc
|
||||
pure $ applyBDs 0 (Meta mc.next) ctx.bds
|
||||
where
|
||||
-- hope I got the right order here :)
|
||||
applyBDs : Nat -> Tm -> List BD -> Tm
|
||||
applyBDs k t [] = t
|
||||
applyBDs k t (Bound :: xs) = App (applyBDs (S k) t xs) (Bnd k)
|
||||
applyBDs k t (Defined :: xs) = applyBDs (S k) t xs
|
||||
|
||||
export
|
||||
lookupMeta : Nat -> M MetaEntry
|
||||
lookupMeta ix = do
|
||||
ctx <- get
|
||||
mc <- readIORef ctx.metas
|
||||
go mc.metas
|
||||
where
|
||||
go : List MetaEntry -> M MetaEntry
|
||||
go [] = error' "Meta \{show ix} not found"
|
||||
go (meta@(Unsolved k ys) :: xs) = if k == ix then pure meta else go xs
|
||||
go (meta@(Solved k x) :: xs) = if k == ix then pure meta else go xs
|
||||
|
||||
export
|
||||
solveMeta : TopContext -> Nat -> Val -> M ()
|
||||
solveMeta ctx ix tm = do
|
||||
mc <- readIORef ctx.metas
|
||||
metas <- go mc.metas [<]
|
||||
writeIORef ctx.metas $ {metas := metas} mc
|
||||
where
|
||||
go : List MetaEntry -> SnocList MetaEntry -> M (List MetaEntry)
|
||||
go [] _ = error' "Meta \{show ix} not found"
|
||||
go (meta@(Unsolved k _) :: xs) lhs = if k == ix
|
||||
then pure $ lhs <>> (Solved k tm :: xs)
|
||||
else go xs (lhs :< meta)
|
||||
go (meta@(Solved k _) :: xs) lhs = if k == ix
|
||||
then error' "Meta \{show ix} already solved!"
|
||||
else go xs (lhs :< meta)
|
||||
|
||||
export partial
|
||||
Show Context where
|
||||
show ctx = "Context \{show $ map fst $ ctx.types}"
|
||||
|
||||
-- TODO Pretty Context
|
||||
|
||||
|
||||
||| add a binding to environment
|
||||
export
|
||||
extend : Context -> String -> Val -> Context
|
||||
extend ctx name ty =
|
||||
{ lvl $= S, env $= (VVar ctx.lvl [] ::), types $= ((name, ty) ::), bds $= (Bound ::) } ctx
|
||||
{ lvl $= S, env $= (VVar ctx.lvl [<] ::), types $= ((name, ty) ::), bds $= (Bound ::) } ctx
|
||||
|
||||
-- I guess we define things as values?
|
||||
export
|
||||
@@ -340,12 +97,86 @@ define ctx name val ty =
|
||||
|
||||
|
||||
-- not used
|
||||
lookup : {0 m : Type -> Type} -> {auto _ : MonadError String m} ->
|
||||
Context -> String -> m Val
|
||||
lookup : Context -> String -> M Val
|
||||
lookup ctx nm = go ctx.types
|
||||
where
|
||||
go : Vect n (String,Val) -> m Val
|
||||
go [] = throwError "Name \{nm} not in scope"
|
||||
go : Vect n (String,Val) -> M Val
|
||||
go [] = error' "Name \{nm} not in scope"
|
||||
go ((n, ty) :: xs) = if n == nm then pure ty else go xs
|
||||
|
||||
|
||||
-- Need to wire in the metas...
|
||||
-- if it's top / ctx / IORef, I also need IO...
|
||||
-- if I want errors, I need m anyway. I've already got an error down there.
|
||||
|
||||
|
||||
|
||||
export
|
||||
eval : Env -> Mode -> Tm -> M Val
|
||||
|
||||
public export
|
||||
($$) : {auto mode : Mode} -> Closure -> Val -> M Val
|
||||
($$) {mode} (MkClosure env tm) u = eval (u :: env) mode tm
|
||||
|
||||
public export
|
||||
infixl 8 $$
|
||||
|
||||
export
|
||||
vapp : Val -> Val -> M Val
|
||||
vapp (VLam _ icit t) u = t $$ u
|
||||
vapp (VVar k sp) u = pure $ VVar k (sp :< u)
|
||||
vapp (VRef nm sp) u = pure $ VRef nm (sp :< u)
|
||||
vapp (VMeta k sp) u = pure $ VMeta k (sp :< u)
|
||||
vapp t u = error' "impossible in vapp \{show t} to \{show u}"
|
||||
|
||||
export
|
||||
vappSpine : Val -> SnocList Val -> M Val
|
||||
vappSpine t [<] = pure t
|
||||
vappSpine t (xs :< x) = vapp !(vappSpine t xs) x
|
||||
|
||||
bind : Val -> Env -> Env
|
||||
bind v env = v :: env
|
||||
|
||||
-- Do we want a def in here instead? We'll need DCon/TCon eventually
|
||||
-- I need to be aggressive about reduction, I guess. I'll figure it out
|
||||
-- later, maybe need lazy glued values.
|
||||
eval env mode (Ref x (Just tm)) = eval env mode tm
|
||||
eval env mode (Ref x Nothing) = pure $ VRef x [<]
|
||||
eval env mode (App t u) = vapp !(eval env mode t) !(eval env mode u)
|
||||
eval env mode U = pure VU
|
||||
eval env mode (Meta i) =
|
||||
case !(lookupMeta i) of
|
||||
(Unsolved k xs) => pure $ VMeta i [<]
|
||||
(Solved k t) => pure $ t
|
||||
eval env mode (Lam x icit t) = pure $ VLam x icit (MkClosure env t)
|
||||
eval env mode (Pi x icit a b) = pure $ VPi x icit !(eval env mode a) (MkClosure env b)
|
||||
eval env mode (Let x icit ty t u) = eval (!(eval env mode t) :: env) mode u
|
||||
eval env mode (Bnd i) = case getAt i env of
|
||||
Just rval => pure rval
|
||||
Nothing => error' "Bad deBruin index \{show i}"
|
||||
|
||||
export
|
||||
quote : (lvl : Nat) -> Val -> M Tm
|
||||
|
||||
quoteSp : (lvl : Nat) -> Tm -> SnocList Val -> M Tm
|
||||
quoteSp lvl t [<] = pure t
|
||||
quoteSp lvl t (xs :< x) =
|
||||
pure $ App !(quoteSp lvl t xs) !(quote lvl x)
|
||||
-- quoteSp lvl (App t !(quote lvl x)) xs -- snoc says previous is right
|
||||
|
||||
quote l (VVar k sp) = if k < l
|
||||
then quoteSp l (Bnd ((l `minus` k) `minus` 1)) sp -- level to index
|
||||
else ?borken
|
||||
quote l (VMeta i sp) = quoteSp l (Meta i) sp
|
||||
quote l (VLam x icit t) = pure $ Lam x icit !(quote (S l) !(t $$ VVar l [<]))
|
||||
quote l (VPi x icit a b) = pure $ Pi x icit !(quote l a) !(quote (S l) !(b $$ VVar l [<]))
|
||||
quote l VU = pure U
|
||||
quote l (VRef n sp) = quoteSp l (Ref n Nothing) sp
|
||||
|
||||
-- Can we assume closed terms?
|
||||
-- ezoo only seems to use it at [], but essentially does this:
|
||||
export
|
||||
nf : Env -> Tm -> M Tm
|
||||
nf env t = quote (length env) !(eval env CBN t)
|
||||
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
module Lib.TopContext
|
||||
|
||||
import Data.String
|
||||
import Lib.TT
|
||||
import Lib.Types
|
||||
import Data.IORef
|
||||
|
||||
-- I want unique ids, to be able to lookup, update, and a Ref so
|
||||
|
||||
258
src/Lib/Types.idr
Normal file
258
src/Lib/Types.idr
Normal file
@@ -0,0 +1,258 @@
|
||||
module Lib.Types
|
||||
-- I'm not sure this is related, or just a note to self (Presheaves on Porpoise)
|
||||
|
||||
-- maybe watch https://www.youtube.com/watch?v=3gef0_NFz8Q
|
||||
-- or drop the indices for now.
|
||||
|
||||
-- For SourcePos
|
||||
import Lib.Parser.Impl
|
||||
import Lib.Prettier
|
||||
|
||||
import public Control.Monad.Error.Either
|
||||
import public Control.Monad.Error.Interface
|
||||
import public Control.Monad.State
|
||||
|
||||
import Data.IORef
|
||||
import Data.Fin
|
||||
import Data.List
|
||||
import Data.SnocList
|
||||
import Data.Vect
|
||||
import Data.SortedMap
|
||||
|
||||
public export
|
||||
Name : Type
|
||||
Name = String
|
||||
|
||||
public export
|
||||
data Icit = Implicit | Explicit
|
||||
|
||||
%name Icit icit
|
||||
|
||||
public export
|
||||
data BD = Bound | Defined
|
||||
|
||||
|
||||
public export
|
||||
data Tm : Type where
|
||||
Bnd : Nat -> Tm
|
||||
-- Maybe Def here instead of Maybe Tm, we'll have DCon, TCon, etc.
|
||||
Ref : String -> Maybe Tm -> Tm
|
||||
Meta : Nat -> Tm
|
||||
-- kovacs optimization, I think we can App out meta instead
|
||||
-- InsMeta : Nat -> List BD -> Tm
|
||||
Lam : Name -> Icit -> Tm -> Tm
|
||||
App : Tm -> Tm -> Tm
|
||||
U : Tm
|
||||
Pi : Name -> Icit -> Tm -> Tm -> Tm
|
||||
Let : Name -> Icit -> Tm -> Tm -> Tm -> Tm
|
||||
|
||||
%name Tm t, u, v
|
||||
|
||||
public export
|
||||
Show Tm where
|
||||
show (Bnd k) = "(Bnd \{show k})"
|
||||
show (Ref str _) = "(Ref \{show str})"
|
||||
show (Lam nm Implicit t) = "(\\ {\{nm}} => \{show t})"
|
||||
show (Lam nm Explicit t) = "(\\ \{nm} => \{show t})"
|
||||
show (App t u) = "(\{show t} \{show u})"
|
||||
show (Meta i) = "(Meta \{show i})"
|
||||
show U = "U"
|
||||
show (Pi str icit t u) = "(∏ \{str} : \{show t} => \{show u})"
|
||||
show (Let str icit t u v) = "let \{str} : \{show t} = \{show u} in \{show v}"
|
||||
|
||||
-- I can't really show val because it's HOAS...
|
||||
|
||||
-- TODO derive
|
||||
export
|
||||
Eq Icit where
|
||||
Implicit == Implicit = True
|
||||
Explicit == Explicit = True
|
||||
_ == _ = False
|
||||
|
||||
||| Eq on Tm. We've got deBruijn indices, so I'm not comparing names
|
||||
export
|
||||
Eq (Tm) where
|
||||
-- (Local x) == (Local y) = x == y
|
||||
(Bnd x) == (Bnd y) = x == y
|
||||
(Ref x _) == (Ref y _) = x == y
|
||||
(Lam n icit t) == (Lam n' icit' t') = icit == icit' && t == t'
|
||||
(App t u) == App t' u' = t == t' && u == u'
|
||||
U == U = True
|
||||
(Pi n icit t u) == (Pi n' icit' t' u') = icit == icit' && t == t' && u == u'
|
||||
(Let n icit t u v) == (Let n' icit' t' u' v') = t == t' && u == u' && v == v'
|
||||
_ == _ = False
|
||||
|
||||
public export
|
||||
Pretty Tm where
|
||||
pretty (Bnd k) = ?rhs_0
|
||||
pretty (Ref str mt) = text str
|
||||
pretty (Meta k) = text "?m\{show k}"
|
||||
pretty (Lam str Implicit t) = text "(\\ {\{str}} => " <+> pretty t <+> ")"
|
||||
pretty (Lam str Explicit t) = text "(\\ \{str} => " <+> pretty t <+> ")"
|
||||
pretty (App t u) = text "(" <+> pretty t <+> pretty u <+> ")"
|
||||
pretty U = "U"
|
||||
pretty (Pi str icit t u) = text "(" <+> text str <+> ":" <+> pretty t <+> "=>" <+> pretty u <+> ")"
|
||||
pretty (Let str icit t u v) = text "let" <+> text str <+> ":" <+> pretty t <+> "=" <+> pretty u
|
||||
|
||||
-- public export
|
||||
-- data Closure : Nat -> Type
|
||||
data Val : Type
|
||||
|
||||
|
||||
-- IS/TypeTheory.idr is calling this a Kripke function space
|
||||
-- Yaffle, IS/TypeTheory use a function here.
|
||||
-- Kovacs, Idris use Env and Tm
|
||||
|
||||
-- in cctt kovacs refers to this choice as defunctionalization vs HOAS
|
||||
-- https://github.com/AndrasKovacs/cctt/blob/main/README.md#defunctionalization
|
||||
-- the tradeoff is access to internals of the function
|
||||
|
||||
-- Yaffle is vars -> vars here
|
||||
|
||||
|
||||
public export
|
||||
data Closure : Type
|
||||
|
||||
public export
|
||||
data Val : Type where
|
||||
-- This will be local / flex with spine.
|
||||
VVar : (k : Nat) -> (sp : SnocList Val) -> Val
|
||||
-- I wanted the Maybe Tm in here, but for now we're always expanding.
|
||||
-- Maybe this is where I glue
|
||||
VRef : (nm : String) -> (sp : SnocList Val) -> Val
|
||||
-- we'll need to look this up in ctx with IO
|
||||
VMeta : (ix : Nat) -> (sp : SnocList Val) -> Val
|
||||
VLam : Name -> Icit -> Closure -> Val
|
||||
VPi : Name -> Icit -> Lazy Val -> Closure -> Val
|
||||
VU : Val
|
||||
|
||||
Show Icit where
|
||||
show Implicit = "I"
|
||||
show Explicit = "E"
|
||||
|
||||
Show Closure
|
||||
|
||||
covering export
|
||||
Show Val where
|
||||
show (VVar k sp) = "(%var \{show k} \{show sp})"
|
||||
show (VRef nm sp) = "(%ref \{nm} \{show sp})"
|
||||
show (VMeta ix sp) = "(%meta \{show ix} \{show sp})"
|
||||
show (VLam str icit x) = "(%lam \{str} \{show icit} \{show x})"
|
||||
show (VPi str icit x y) = "(%pi \{str} \{show icit} \{show x} \{show y})"
|
||||
show VU = "U"
|
||||
|
||||
public export
|
||||
Env : Type
|
||||
Env = List Val
|
||||
|
||||
public export
|
||||
data Mode = CBN | CBV
|
||||
|
||||
public export
|
||||
data Closure = MkClosure Env Tm
|
||||
|
||||
covering
|
||||
Show Closure where
|
||||
show (MkClosure xs t) = "(%cl \{show xs} \{show t})"
|
||||
{-
|
||||
smalltt
|
||||
|
||||
smalltt gets into weird haskell weeds in eval - shifting top level to the left
|
||||
and tagging meta vs top with a bit.
|
||||
|
||||
I think something subtle is going on with laziness on Elaboration.hs:300
|
||||
yeah, and define is even inlined.
|
||||
|
||||
So it has a top context, and clears out almost everything for processing a def in
|
||||
a different kind of context.
|
||||
|
||||
we very much need an idea of local context for metas. I don't want to abstract over
|
||||
the entire program.
|
||||
|
||||
So I guess we have top and local then?
|
||||
|
||||
With haskell syntax. I think we can have Axiom for claims and rewrite to def later.
|
||||
|
||||
Hmm, so given ezoo, if I'm going simple, I could keep BDs short, and use the normal
|
||||
context. (Zoo4.lean:222) I'd probably still need an undefined/axiom marker as a value?
|
||||
|
||||
ok, so with just one context, Env is List Val and we're getting Tm back from type checking.
|
||||
|
||||
Can I get val back? Do we need to quote? What happens if we don't?
|
||||
|
||||
-}
|
||||
|
||||
-- FIXME remove List BD
|
||||
public export
|
||||
data MetaEntry = Unsolved Nat (List BD) | Solved Nat Val
|
||||
|
||||
public export
|
||||
record MetaContext where
|
||||
constructor MC
|
||||
metas : List MetaEntry
|
||||
next : Nat
|
||||
|
||||
|
||||
public export
|
||||
data Def = Axiom | TCon (List String) | DCon Nat | Fn Tm
|
||||
|
||||
Show Def where
|
||||
show Axiom = "axiom"
|
||||
show (TCon strs) = "TCon \{show strs}"
|
||||
show (DCon k) = "DCon \{show k}"
|
||||
show (Fn t) = "Fn \{show t}"
|
||||
|
||||
||| entry in the top level context
|
||||
public export
|
||||
record TopEntry where
|
||||
constructor MkEntry
|
||||
name : String
|
||||
type : Tm
|
||||
def : Def
|
||||
|
||||
-- FIXME snoc
|
||||
|
||||
export
|
||||
Show TopEntry where
|
||||
show (MkEntry name type def) = "\{name} : \{show type} := \{show def}"
|
||||
|
||||
||| Top level context.
|
||||
||| Most of the reason this is separate is to have a different type
|
||||
||| `Def` for the entries.
|
||||
|||
|
||||
||| The price is that we have names in addition to levels. Do we want to
|
||||
||| expand these during normalization?
|
||||
public export
|
||||
record TopContext where
|
||||
constructor MkTop
|
||||
-- We'll add a map later?
|
||||
defs : List TopEntry
|
||||
metas : IORef MetaContext
|
||||
-- metas : TODO
|
||||
|
||||
-- we'll use this for typechecking, but need to keep a TopContext around too.
|
||||
public export
|
||||
record Context where
|
||||
constructor MkCtx
|
||||
lvl : Nat
|
||||
-- shall we use lvl as an index?
|
||||
env : Env -- Values in scope
|
||||
types : Vect lvl (String, Val) -- types and names in scope
|
||||
-- so we'll try "bds" determines length of local context
|
||||
bds : List BD -- bound or defined
|
||||
pos : SourcePos -- the last SourcePos that we saw
|
||||
|
||||
-- We only need this here if we don't pass TopContext
|
||||
-- top : TopContext
|
||||
metas : IORef MetaContext
|
||||
|
||||
|
||||
public export
|
||||
M : Type -> Type
|
||||
M = (StateT TopContext (EitherT Impl.Error IO))
|
||||
|
||||
-- we need more of topcontext later - Maybe switch it up so we're not passing
|
||||
-- around top
|
||||
export
|
||||
mkCtx : IORef MetaContext -> Context
|
||||
mkCtx metas = MkCtx 0 [] [] [] (0,0) metas
|
||||
31
src/Main.idr
31
src/Main.idr
@@ -14,6 +14,7 @@ import Lib.Prettier
|
||||
import Lib.Token
|
||||
import Lib.Tokenizer
|
||||
import Lib.TopContext
|
||||
import Lib.Types
|
||||
import Lib.TT
|
||||
import Syntax
|
||||
import Syntax
|
||||
@@ -33,9 +34,6 @@ I still want to stay in MonadError outside this file though.
|
||||
|
||||
-}
|
||||
|
||||
M : Type -> Type
|
||||
M = (StateT TopContext (EitherT Impl.Error IO))
|
||||
|
||||
|
||||
dumpContext : TopContext -> M ()
|
||||
dumpContext top = do
|
||||
@@ -51,7 +49,7 @@ processDecl : Decl -> M ()
|
||||
processDecl (TypeSig nm tm) = do
|
||||
top <- get
|
||||
putStrLn "TypeSig \{nm} \{show tm}"
|
||||
ty <- check top (mkCtx top.metas) tm VU
|
||||
ty <- check (mkCtx top.metas) tm VU
|
||||
putStrLn "got \{show ty}"
|
||||
modify $ claim nm ty
|
||||
|
||||
@@ -69,17 +67,34 @@ processDecl (Def nm raw) = do
|
||||
let (MkEntry name ty Axiom) := entry
|
||||
| _ => throwError $ E pos "\{nm} already defined"
|
||||
putStrLn "check \{nm} = \{show raw} at \{show $ ty}"
|
||||
let vty = eval empty CBN ty
|
||||
tm <- check ctx (mkCtx ctx.metas) raw vty
|
||||
vty <- eval empty CBN ty
|
||||
tm <- check (mkCtx ctx.metas) raw vty
|
||||
putStrLn "Ok \{show tm}"
|
||||
put (addDef ctx nm tm ty)
|
||||
|
||||
processDecl (DCheck tm ty) = do
|
||||
|
||||
top <- get
|
||||
putStrLn "check \{show tm} at \{show ty}"
|
||||
ty' <- check (mkCtx top.metas) tm VU
|
||||
putStrLn "got type \{show ty'}"
|
||||
vty <- eval [] CBN ty'
|
||||
res <- check (mkCtx top.metas) ty vty
|
||||
putStrLn "got \{show res}"
|
||||
norm <- nf [] res
|
||||
putStrLn "norm \{show norm}"
|
||||
-- top <- get
|
||||
-- ctx <- mkCtx top.metas
|
||||
-- I need a type to check against
|
||||
-- norm <- nf [] x
|
||||
putStrLn "NF "
|
||||
|
||||
processDecl (DImport str) = throwError $ E (0,0) "import not implemented"
|
||||
|
||||
processDecl (Data nm ty cons) = do
|
||||
-- It seems like the FC for the errors are not here?
|
||||
ctx <- get
|
||||
tyty <- check ctx (mkCtx ctx.metas) ty VU
|
||||
tyty <- check (mkCtx ctx.metas) ty VU
|
||||
-- TODO check tm is VU or Pi ending in VU
|
||||
-- Maybe a pi -> binders function
|
||||
-- TODO we're putting in axioms, we need constructors
|
||||
@@ -91,7 +106,7 @@ processDecl (Data nm ty cons) = do
|
||||
(TypeSig nm' tm) => do
|
||||
ctx <- get
|
||||
-- TODO check pi type ending in full tyty application
|
||||
dty <- check ctx (mkCtx ctx.metas) tm VU
|
||||
dty <- check (mkCtx ctx.metas) tm VU
|
||||
modify $ claim nm' dty
|
||||
_ => throwError $ E (0,0) "expected TypeSig"
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ import Data.String
|
||||
import Data.Maybe
|
||||
import Lib.Parser.Impl
|
||||
import Lib.Prettier
|
||||
import Lib.TT
|
||||
import Lib.Types
|
||||
|
||||
public export
|
||||
data Raw : Type where
|
||||
@@ -58,6 +58,7 @@ data Decl
|
||||
= TypeSig Name Raw
|
||||
| Def Name Raw
|
||||
| DImport Name
|
||||
| DCheck Raw Raw
|
||||
| Data Name Raw (List Decl)
|
||||
|
||||
public export
|
||||
@@ -94,6 +95,7 @@ Show Decl where
|
||||
show (Def str x) = foo ["Def", show str, show x]
|
||||
show (Data str xs ys) = foo ["Data", show str, show xs, show ys]
|
||||
show (DImport str) = foo ["DImport", show str]
|
||||
show (DCheck x y) = foo ["DCheck", show x, show y]
|
||||
|
||||
export covering
|
||||
Show Module where
|
||||
@@ -181,3 +183,4 @@ Pretty Module where
|
||||
doDecl (DImport nm) = text "import" <+> text nm ++ line
|
||||
-- the behavior of nest is kinda weird, I have to do the nest before/around the </>.
|
||||
doDecl (Data nm x xs) = text "data" <+> text nm <+> text ":" <+> pretty x <+> (nest 2 $ text "where" </> stack (map doDecl xs))
|
||||
doDecl (DCheck x y) = text "#check" <+> pretty x <+> ":" <+> pretty y
|
||||
|
||||
Reference in New Issue
Block a user