forall / ∀ syntactic sugar
This commit is contained in:
@@ -21,17 +21,17 @@ S n + m = S (n + m)
|
||||
-- A list is empty (Nil) or a value followed by a list (separated by the :: operator)
|
||||
infixr 3 _::_
|
||||
data List : U -> U where
|
||||
Nil : {A : U} -> List A
|
||||
_::_ : {A : U} -> A -> List A -> List A
|
||||
Nil : ∀ A. List A
|
||||
_::_ : ∀ A. A -> List A -> List A
|
||||
|
||||
-- length of a list is defined inductively
|
||||
length : {A : U} -> List A -> Nat
|
||||
length : ∀ A . List A -> Nat
|
||||
length Nil = Z
|
||||
length (x :: xs) = S (length xs)
|
||||
|
||||
-- List concatenation
|
||||
infixl 2 _++_
|
||||
_++_ : {A : U} -> List A -> List A -> List A
|
||||
_++_ : ∀ A. List A -> List A -> List A
|
||||
Nil ++ ys = ys
|
||||
x :: xs ++ ys = x :: (xs ++ ys)
|
||||
|
||||
@@ -40,8 +40,8 @@ x :: xs ++ ys = x :: (xs ++ ys)
|
||||
-- Magic happens in the compiler when it tries to make the types
|
||||
-- fit into this.
|
||||
infixl 1 _≡_
|
||||
data _≡_ : {A : U} -> A -> A -> U where
|
||||
Refl : {A : U} {a : A} -> a ≡ a
|
||||
data _≡_ : ∀ A . A -> A -> U where
|
||||
Refl : ∀ A . {a : A} -> a ≡ a
|
||||
|
||||
-- If a ≡ b then b ≡ a
|
||||
sym : {A : U} {a b : A} -> a ≡ b -> b ≡ a
|
||||
@@ -60,32 +60,32 @@ cong : {A B : U} {a b : A} -> (f : A -> B) -> a ≡ b -> f a ≡ f b
|
||||
|
||||
-- if concatenate two lists, the length is the sum of the lengths
|
||||
-- of the original lists
|
||||
length-++ : {A : U} (xs ys : List A) -> length (xs ++ ys) ≡ length xs + length ys
|
||||
length-++ : ∀ A. (xs ys : List A) -> length (xs ++ ys) ≡ length xs + length ys
|
||||
length-++ Nil ys = Refl
|
||||
length-++ (x :: xs) ys = cong S (length-++ xs ys)
|
||||
|
||||
-- a function to reverse a list
|
||||
reverse : {A : U} -> List A -> List A
|
||||
reverse : ∀ A. List A -> List A
|
||||
reverse Nil = Nil
|
||||
reverse (x :: xs) = reverse xs ++ (x :: Nil)
|
||||
|
||||
-- if we add an empty list to a list, we get the original back
|
||||
++-identity : {A : U} -> (xs : List A) -> xs ++ Nil ≡ xs
|
||||
++-identity : ∀ A. (xs : List A) -> xs ++ Nil ≡ xs
|
||||
++-identity Nil = Refl
|
||||
++-identity (x :: xs) = cong (_::_ x) (++-identity xs)
|
||||
|
||||
-- concatenation is associative
|
||||
++-associative : {A : U} (xs ys zs : List A) -> xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs
|
||||
++-associative : ∀ A. (xs ys zs : List A) -> xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs
|
||||
|
||||
-- reverse distributes over ++, but switches order
|
||||
reverse-++-distrib : {A : U} -> (xs ys : List A) -> reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
|
||||
reverse-++-distrib : ∀ A. (xs ys : List A) -> reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
|
||||
reverse-++-distrib Nil ys = sym (++-identity (reverse ys))
|
||||
reverse-++-distrib (x :: xs) ys =
|
||||
trans (cong (\ z => z ++ (x :: Nil)) (reverse-++-distrib xs ys))
|
||||
(sym (++-associative (reverse ys) (reverse xs) (x :: Nil)))
|
||||
|
||||
-- same thing, but using `replace` in the proof
|
||||
reverse-++-distrib' : {A : U} -> (xs ys : List A) -> reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
|
||||
reverse-++-distrib' : ∀ A. (xs ys : List A) -> reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
|
||||
reverse-++-distrib' Nil ys = sym (++-identity (reverse ys))
|
||||
reverse-++-distrib' {A} (x :: xs) ys =
|
||||
replace (\ z => (reverse (xs ++ ys) ++ (x :: Nil)) ≡ z)
|
||||
@@ -93,28 +93,28 @@ reverse-++-distrib' {A} (x :: xs) ys =
|
||||
(replace (\ z => (reverse (xs ++ ys)) ++ (x :: Nil) ≡ z ++ (x :: Nil)) (reverse-++-distrib' xs ys) Refl)
|
||||
|
||||
-- reverse of reverse gives you the original list
|
||||
reverse-involutive : {A : U} -> (xs : List A) -> reverse (reverse xs) ≡ xs
|
||||
reverse-involutive : ∀ A. (xs : List A) -> reverse (reverse xs) ≡ xs
|
||||
reverse-involutive Nil = Refl
|
||||
reverse-involutive (x :: xs) =
|
||||
trans (reverse-++-distrib (reverse xs) (x :: Nil))
|
||||
(cong (_::_ x) (reverse-involutive xs))
|
||||
|
||||
-- helper for a different version of reverse
|
||||
shunt : {A : U} -> List A -> List A -> List A
|
||||
shunt : ∀ A. List A -> List A -> List A
|
||||
shunt Nil ys = ys
|
||||
shunt (x :: xs) ys = shunt xs (x :: ys)
|
||||
|
||||
-- lemma
|
||||
shunt-reverse : {A : U} (xs ys : List A) -> shunt xs ys ≡ reverse xs ++ ys
|
||||
shunt-reverse : ∀ A. (xs ys : List A) -> shunt xs ys ≡ reverse xs ++ ys
|
||||
shunt-reverse Nil ys = Refl
|
||||
shunt-reverse (x :: xs) ys =
|
||||
trans (shunt-reverse xs (x :: ys))
|
||||
(++-associative (reverse xs) (x :: Nil) ys)
|
||||
|
||||
-- an alternative definition of reverse
|
||||
reverse' : {A : U} -> List A -> List A
|
||||
reverse' : ∀ A. List A -> List A
|
||||
reverse' xs = shunt xs Nil
|
||||
|
||||
-- proof that the reverse and reverse' give the same results
|
||||
reverses : {A : U} → (xs : List A) → reverse' xs ≡ reverse xs
|
||||
reverses : ∀ A. (xs : List A) → reverse' xs ≡ reverse xs
|
||||
reverses xs = trans (shunt-reverse xs Nil) (++-identity _)
|
||||
|
||||
@@ -77,13 +77,13 @@ test = Refl
|
||||
infixl 7 _+_
|
||||
|
||||
-- We don't have records yet, so we define a single constructor
|
||||
-- inductive type:
|
||||
-- inductive type. Here we also use `∀ A.` which is sugar for `{A : _} ->`
|
||||
data Plus : U -> U where
|
||||
MkPlus : {A : U} -> (A -> A -> A) -> Plus A
|
||||
MkPlus : ∀ A. (A -> A -> A) -> Plus A
|
||||
|
||||
-- and the generic function that uses it
|
||||
-- the double brackets indicate an argument that is solved by search
|
||||
_+_ : {A : U} {{_ : Plus A}} -> A -> A -> A
|
||||
_+_ : ∀ A. {{_ : Plus A}} -> A -> A -> A
|
||||
_+_ {{MkPlus f}} x y = f x y
|
||||
|
||||
-- The typeclass is now defined, search will look for functions in scope
|
||||
@@ -150,31 +150,31 @@ data Monad : (U -> U) -> U where
|
||||
({a b : U} -> m a -> (a -> m b) -> m b) ->
|
||||
Monad m
|
||||
|
||||
pure : {m : U -> U} -> {{_ : Monad m}} -> {a : U} -> a -> m a
|
||||
pure : ∀ m . {{_ : Monad m}} -> {a : U} -> a -> m a
|
||||
pure {{MkMonad p _}} a = p a
|
||||
|
||||
-- we can declare multiple infix operators at once
|
||||
infixl 1 _>>=_ _>>_
|
||||
|
||||
_>>=_ : {m : U -> U} -> {{_ : Monad m}} -> {a b : U} -> m a -> (a -> m b) -> m b
|
||||
_>>=_ : ∀ m a b. {{_ : Monad m}} -> m a -> (a -> m b) -> m b
|
||||
_>>=_ {{MkMonad _ b}} ma amb = b ma amb
|
||||
|
||||
_>>_ : {m : U -> U} -> {{_ : Monad m}} -> {a b : U} -> m a -> m b -> m b
|
||||
_>>_ : ∀ m a b. {{_ : Monad m}} -> m a -> m b -> m b
|
||||
ma >> mb = ma >>= (λ _ => mb)
|
||||
|
||||
-- That's our Monad typeclass, now let's make a List monad
|
||||
|
||||
infixr 3 _::_
|
||||
data List : U -> U where
|
||||
Nil : {A : U} -> List A
|
||||
_::_ : {A : U} -> A -> List A -> List A
|
||||
Nil : ∀ A. List A
|
||||
_::_ : ∀ A. A -> List A -> List A
|
||||
|
||||
infixr 7 _++_
|
||||
_++_ : {a : U} -> List a -> List a -> List a
|
||||
_++_ : ∀ a. List a -> List a -> List a
|
||||
Nil ++ ys = ys
|
||||
(x :: xs) ++ ys = x :: (xs ++ ys)
|
||||
|
||||
bindList : {a b : U} -> List a -> (a -> List b) -> List b
|
||||
bindList : ∀ a b. List a -> (a -> List b) -> List b
|
||||
bindList Nil f = Nil
|
||||
bindList (x :: xs) f = f x ++ bindList xs f
|
||||
|
||||
@@ -186,11 +186,11 @@ MonadList = MkMonad (λ a => a :: Nil) bindList
|
||||
-- Also we see that → can be used in lieu of ->
|
||||
infixr 1 _,_ _×_
|
||||
data _×_ : U → U → U where
|
||||
_,_ : {A B : U} → A → B → A × B
|
||||
_,_ : ∀ A B. A → B → A × B
|
||||
|
||||
-- The _>>=_ operator is used for desugaring do blocks
|
||||
|
||||
prod : {A B : U} → List A → List B → List (A × B)
|
||||
prod : ∀ A B. List A → List B → List (A × B)
|
||||
prod xs ys = do
|
||||
x <- xs
|
||||
y <- ys
|
||||
|
||||
@@ -70,6 +70,8 @@ export let newtTokens: monaco.languages.IMonarchLanguage = {
|
||||
"case",
|
||||
"of",
|
||||
"data",
|
||||
"forall",
|
||||
"∀",
|
||||
"U",
|
||||
"module",
|
||||
"ptype",
|
||||
|
||||
Reference in New Issue
Block a user