update docs and a test
This commit is contained in:
@@ -19,7 +19,7 @@ The repository is tagging `.newt` files as Agda to convince github to highlight
|
||||
There is a `Makefile` that builds both chez and javascript versions. They end up in
|
||||
`build/exec` as usual. I've also added a `pack.toml`, so `pack build` also works.
|
||||
|
||||
There is a vscode extension in `newt-vscode`. Running `make vscode` will build and install it. The extension expects `build/exec/newt` to exist in the workspace.
|
||||
There is a vscode extension in `newt-vscode`. Running `make vscode` will build and install it. The extension expects `build/exec/newt` to exist in the workspace. And `make test` will run a few black box tests. Currently it simply checks return codes, since the output is in flux.
|
||||
|
||||
## Overview
|
||||
|
||||
@@ -52,8 +52,7 @@ Following kovacs, I'm putting `VVar` into context env when I go under binders. T
|
||||
|
||||
## Autos
|
||||
|
||||
Newt has primitive auto implicits. As a first pass, higher order ones, like monad, will not
|
||||
|
||||
Newt has primitive auto implicits. They are denoted by double braces `{{}}` as in Agda. Newt will search for a function that returns a type in the same family, only has implicit and auto-implicit arguments, and unifies (satisfying any relevant constraints).
|
||||
|
||||
## Issues
|
||||
|
||||
|
||||
@@ -1,110 +0,0 @@
|
||||
-- This needs to solve at a pi-type and the constraint has it applied..
|
||||
module Tree2
|
||||
|
||||
-- https://youtu.be/v2yXrOkzt5w?t=3013
|
||||
|
||||
data Nat : U where
|
||||
Z : Nat
|
||||
S : Nat -> Nat
|
||||
|
||||
data Unit : U where
|
||||
MkUnit : Unit
|
||||
|
||||
data Void : U where
|
||||
|
||||
infixl 4 _+_
|
||||
|
||||
data _+_ : U -> U -> U where
|
||||
inl : {A B : U} -> A -> A + B
|
||||
inr : {A B : U} -> B -> A + B
|
||||
|
||||
infix 4 _<=_
|
||||
|
||||
_<=_ : Nat -> Nat -> U
|
||||
Z <= y = Unit
|
||||
S x <= Z = Void
|
||||
S x <= S y = x <= y
|
||||
|
||||
cmp : (x y : Nat) -> (x <= y) + (y <= x)
|
||||
cmp Z y = inl MkUnit
|
||||
cmp (S z) Z = inr MkUnit
|
||||
cmp (S x) (S y) = cmp x y
|
||||
|
||||
-- 53:21
|
||||
|
||||
data Bnd : U where
|
||||
Bot : Bnd
|
||||
N : Nat -> Bnd
|
||||
Top : Bnd
|
||||
|
||||
infix 4 _<<=_
|
||||
|
||||
_<<=_ : Bnd -> Bnd -> U
|
||||
Bot <<= _ = Unit
|
||||
N x <<= N y = x <= y
|
||||
_ <<= Top = Unit
|
||||
_ <<= _ = Void
|
||||
|
||||
data Intv : Bnd -> Bnd -> U where
|
||||
intv : {l u : Bnd} (x : Nat) (lx : l <<= N x) (xu : N x <<= u) -> Intv l u
|
||||
|
||||
data T23 : Bnd -> Bnd -> Nat -> U where
|
||||
leaf : {l u : Bnd} {h : Nat} (lu : l <<= u) -> T23 l u Z
|
||||
node2 : {l u : Bnd} {h : Nat} (x : _)
|
||||
(tlx : T23 l (N x) h) (txu : T23 (N x) u h) ->
|
||||
T23 l u (S h)
|
||||
node3 : {l u : Bnd} {h : Nat} (x y : _)
|
||||
(tlx : T23 l (N x) h) (txy : T23 (N x) (N y) h) (tyu : T23 (N y) u h) ->
|
||||
T23 l u (S h)
|
||||
|
||||
-- 56:
|
||||
|
||||
infixl 5 _*_
|
||||
infixr 1 _,_
|
||||
data Sg : (A : U) -> (A -> U) -> U where
|
||||
_,_ : {A : U} {B : A -> U} -> (a : A) -> B a -> Sg A B
|
||||
|
||||
|
||||
-- Accidentally defined this as a separate data because I was
|
||||
-- guessing the def behind _*_. I get an unsolved meta below if
|
||||
-- I define in terms of Sg.
|
||||
|
||||
-- It's meta applied to too many args. I think the root issue is that
|
||||
-- _*_ gets expanded early and then \ _ => B a =?= ?meta a isn't solvable
|
||||
-- but if it was A * B =?= A * ?meta we could say A =?= A, B =?= ?meta without expanding
|
||||
|
||||
_*_ : U -> U -> U
|
||||
A * B = Sg A (\ _ => B)
|
||||
|
||||
-- data _*_ : (A B : U) -> U where
|
||||
-- _,_ : {A B : U} -> A -> B -> A * B
|
||||
|
||||
TooBig : Bnd -> Bnd -> Nat -> U
|
||||
TooBig l u h = Sg Nat (\ x => (T23 l (N x) h) * (T23 (N x) u h))
|
||||
|
||||
insert : {h : Nat} {l u : Bnd} -> Intv l u -> T23 l u h -> TooBig l u h + T23 l u h
|
||||
-- Agda is yellow here, needs h = x on each leaf
|
||||
-- The second arg to the second _,_ is unsolved and pi-typed
|
||||
insert (intv x lx xu) (leaf lu) = inl (x , (leaf {_} {_} {x} lx , leaf {_} {_} {x} xu))
|
||||
insert (intv x lx xu) (node2 y tly tyu) = case cmp x y of
|
||||
-- u := N y is not solved at this time
|
||||
inl xy => case insert (intv {_} {N y} x lx xy) tly of
|
||||
inl (z , (tlz , tzy)) => inr (node3 z y tlz tzy tyu)
|
||||
inr tly' => inr (node2 y tly' tyu)
|
||||
inr yx => case insert (intv {N y} x yx xu) tyu of
|
||||
inl (z , (tyz , tzu)) => inr (node3 y z tly tyz tzu)
|
||||
inr tyu' => inr (node2 y tly tyu')
|
||||
insert (intv x lx xu) (node3 y z tly tyz tzu) = case cmp x y of
|
||||
inl xy => case insert (intv {_} {N y} x lx xy) tly of
|
||||
-- TODO Here a meta is applied to an extra argument, if we ignore that
|
||||
-- constraint we get a better one later - _but_ we probably need to check
|
||||
-- the constraint later.
|
||||
inl (v , (tlv , tvy)) => inl (y , (node2 v tlv tvy , node2 z tyz tzu))
|
||||
inr tly' => inr (node3 y z tly' tyz tzu)
|
||||
inr yx => case cmp x z of
|
||||
inl xz => case insert (intv {N y} {N z} x yx xz) tyz of
|
||||
inl (w , (tyw , twz)) => inl (w , (node2 y tly tyw , node2 z twz tzu))
|
||||
inr tyz' => inr (node3 y z tly tyz' tzu)
|
||||
inr zx => case insert (intv {N z} x zx xu) tzu of
|
||||
inl (w , (tzw , twu)) => inl (z , (node2 y tly tyz , node2 w tzw twu))
|
||||
inr tzu' => inr (node3 y z tly tyz tzu')
|
||||
@@ -1,6 +1,8 @@
|
||||
module Tree
|
||||
|
||||
-- https://youtu.be/v2yXrOkzt5w?t=3013
|
||||
-- adapted from Conor McBride's 2-3 tree example
|
||||
-- youtube video: https://youtu.be/v2yXrOkzt5w?t=3013
|
||||
|
||||
|
||||
data Nat : U where
|
||||
Z : Nat
|
||||
@@ -60,43 +62,35 @@ data T23 : Bnd -> Bnd -> Nat -> U where
|
||||
|
||||
infixl 5 _*_
|
||||
infixr 1 _,_
|
||||
infixr 1 _**_
|
||||
data Sg : (A : U) -> (A -> U) -> U where
|
||||
_**_ : {A : U} {B : A -> U} -> (a : A) -> B a -> Sg A B
|
||||
_,_ : {A : U} {B : A -> U} -> (a : A) -> B a -> Sg A B
|
||||
|
||||
|
||||
-- Accidentally defined this as a separate data because I was
|
||||
-- guessing the def behind _*_. I get an unsolved meta below if
|
||||
-- I define in terms of Sg.
|
||||
|
||||
-- _*_ : U -> U -> U
|
||||
-- A * B = Sg A (\ _ => B)
|
||||
|
||||
data _*_ : (A B : U) -> U where
|
||||
_,_ : {A B : U} -> A -> B -> A * B
|
||||
_*_ : U -> U -> U
|
||||
A * B = Sg A (\ _ => B)
|
||||
|
||||
TooBig : Bnd -> Bnd -> Nat -> U
|
||||
TooBig l u h = Sg Nat (\ x => T23 l (N x) h * T23 (N x) u h)
|
||||
|
||||
insert : {h : Nat} {l u : Bnd} -> Intv l u -> T23 l u h -> TooBig l u h + T23 l u h
|
||||
-- Agda is yellow here, needs h = x on each leaf
|
||||
insert (intv x lx xu) (leaf lu) = inl (x ** (leaf {_} {_} {x} lx , leaf {_} {_} {x} xu))
|
||||
-- The second arg to the second _,_ is unsolved and pi-typed
|
||||
insert (intv x lx xu) (leaf lu) = inl (x , (leaf {_} {_} {x} lx , leaf {_} {_} {x} xu))
|
||||
insert (intv x lx xu) (node2 y tly tyu) = case cmp x y of
|
||||
-- u := N y is not solved at this time
|
||||
inl xy => case insert (intv {_} {N y} x lx xy) tly of
|
||||
inl (z ** (tlz, tzy)) => inr (node3 z y tlz tzy tyu)
|
||||
inl (z , (tlz , tzy)) => inr (node3 z y tlz tzy tyu)
|
||||
inr tly' => inr (node2 y tly' tyu)
|
||||
inr yx => case insert (intv {N y} x yx xu) tyu of
|
||||
inl (z ** (tyz, tzu)) => inr (node3 y z tly tyz tzu)
|
||||
inl (z , (tyz , tzu)) => inr (node3 y z tly tyz tzu)
|
||||
inr tyu' => inr (node2 y tly tyu')
|
||||
insert (intv x lx xu) (node3 y z tly tyz tzu) = case cmp x y of
|
||||
inl xy => case insert (intv {_} {N y} x lx xy) tly of
|
||||
inl (v ** (tlv , tvy)) => inl (y ** (node2 v tlv tvy, node2 z tyz tzu))
|
||||
inl (v , (tlv , tvy)) => inl (y , (node2 v tlv tvy , node2 z tyz tzu))
|
||||
inr tly' => inr (node3 y z tly' tyz tzu)
|
||||
inr yx => case cmp x z of
|
||||
inl xz => case insert (intv {N y} {N z} x yx xz) tyz of
|
||||
inl (w ** (tyw , twz)) => inl (w ** (node2 y tly tyw, node2 z twz tzu))
|
||||
inl (w , (tyw , twz)) => inl (w , (node2 y tly tyw , node2 z twz tzu))
|
||||
inr tyz' => inr (node3 y z tly tyz' tzu)
|
||||
inr zx => case insert (intv {N z} x zx xu) tzu of
|
||||
inl (w ** (tzw, twu)) => inl (z ** (node2 y tly tyz, node2 w tzw twu))
|
||||
inl (w , (tzw , twu)) => inl (z , (node2 y tly tyz , node2 w tzw twu))
|
||||
inr tzu' => inr (node3 y z tly tyz tzu')
|
||||
|
||||
Reference in New Issue
Block a user