change {A} to mean {_ : A} instead of {A : _}

This commit is contained in:
2024-11-06 21:10:05 -08:00
parent 375c16f4fd
commit eb1388caa8
3 changed files with 18 additions and 17 deletions

View File

@@ -1,7 +1,7 @@
## TODO
- [ ] I've made `{x}` be `{x : _}` instead of `{_ : x}`. Change this.
- [x] I've made `{x}` be `{x : _}` instead of `{_ : x}`. Change this.
- [ ] Remove context lambdas when printing solutions (show names from context)
- build list of names and strip λ, then call pprint with names
- [ ] Check for shadowing when declaring dcon

View File

@@ -225,7 +225,8 @@ varname = (ident <|> uident <|> keyword "_" *> pure "_")
ebind : Parser (List (FC, String, Icit, Raw))
ebind = do
-- don't commit until we see the ":"
names <- try (sym "(" *> some (withPos varname) <* sym ":")
sym "("
names <- try (some (withPos varname) <* sym ":")
ty <- typeExpr
sym ")"
pure $ map (\(pos, name) => (pos, name, Explicit, ty)) names
@@ -234,18 +235,18 @@ ibind : Parser (List (FC, String, Icit, Raw))
ibind = do
sym "{"
-- REVIEW - I have name required and type optional, which I think is the opposite of what I expect
names <- some $ withPos varname
ty <- optional (sym ":" >> typeExpr)
names <- try (some (withPos varname) <* sym ":")
ty <- typeExpr
sym "}"
pure $ map (\(pos,name) => (pos, name, Implicit, fromMaybe (RImplicit pos) ty)) names
pure $ map (\(pos,name) => (pos, name, Implicit, ty)) names
abind : Parser (List (FC, String, Icit, Raw))
abind = do
sym "{{"
names <- some $ withPos varname
ty <- optional (sym ":" >> typeExpr)
names <- try (some (withPos varname) <* sym ":")
ty <- typeExpr
sym "}}"
pure $ map (\(pos,name) => (pos, name, Auto, fromMaybe (RImplicit pos) ty)) names
pure $ map (\(pos,name) => (pos, name, Auto, ty)) names
arrow : Parser Unit
arrow = sym "->" <|> sym ""

View File

@@ -4,14 +4,14 @@ id : {A : U} -> A -> A
id = \x => x -- elaborated to \{A} x. x
-- implicit arg types can be omitted
const : {A B} -> A -> B -> A
const : {A B : U} -> A -> B -> A
const = \x y => x
-- function arguments can be grouped:
group1 : {A B : U}(x y z : A) -> B -> B
group1 = \x y z b => b
group2 : {A B}(x y z : A) -> B -> B
group2 : {A B : U}(x y z : A) -> B -> B
group2 = \x y z b => b
-- explicit id function used for annotation as in Idris
@@ -43,20 +43,20 @@ false = \B t f => f
List : U -> U
List = \A => (L : _) -> (A -> L -> L) -> L -> L
nil : {A} -> List A
nil : {A : U} -> List A
nil = \L cons nil => nil
cons : {A} -> A -> List A -> List A
cons : {A : U} -> A -> List A -> List A
cons = \ x xs L cons nil => cons x (xs L cons nil)
map : {A B} -> (A -> B) -> List A -> List B
map : {A B : U} -> (A -> B) -> List A -> List B
map = \{A} {B} f xs L c n => xs L (\a => c (f a)) n
list1 : List Bool
list1 = cons true (cons false (cons true nil))
-- dependent function composition
comp : {A} {B : A -> U} {C : {a : A} -> B a -> U}
comp : {A : U} {B : A -> U} {C : {a : A} -> B a -> U}
(f : {a : A} (b : B a) -> C b)
(g : (a : A) -> B a)
(a : A)
@@ -80,13 +80,13 @@ hundred : _
hundred = mul ten ten
-- Leibniz equality
Eq : {A} -> A -> A -> U
Eq : {A: U} -> A -> A -> U
Eq = \{A} x y => (P : A -> U) -> P x -> P y
refl : {A} {x : A} -> Eq x x
refl : {A : U} {x : A} -> Eq x x
refl = \_ px => px
sym : {A x y} -> Eq {A} x y -> Eq y x
sym : {A x y : _} -> Eq {A} x y -> Eq y x
sym = \p => p (\y => Eq y x) refl
eqtest : Eq (mul ten ten) hundred