more work on well scoped
This commit is contained in:
@@ -10,7 +10,7 @@ Name = String
|
||||
|
||||
-- Trying to do well-scoped here, so the indices are proven.
|
||||
|
||||
export
|
||||
public export
|
||||
data Icit = Implicit | Explicit
|
||||
|
||||
%name Icit icit
|
||||
@@ -28,9 +28,24 @@ data Tm : Nat -> Nat -> Type where
|
||||
|
||||
%name Tm t, u, v
|
||||
|
||||
-- TODO derive
|
||||
export
|
||||
Eq (Tm k n) where
|
||||
(Local x) == (Local y) = x == y
|
||||
(Bnd x) == (Bnd y) = x == y
|
||||
(Ref x) == (Ref y) = x == y
|
||||
(Lam str icit t) == y = ?rhs_3
|
||||
(App t u) == y = ?rhs_4
|
||||
U == y = ?rhs_5
|
||||
(Pi str icit t u) == y = ?rhs_6
|
||||
(Let str icit t u v) == y = ?rhs_7
|
||||
_ == _ = False
|
||||
|
||||
-- public export
|
||||
-- data Closure : Nat -> Type
|
||||
data Val : Nat -> Type
|
||||
|
||||
public export
|
||||
0 Closure : Nat -> Type
|
||||
|
||||
-- IS/TypeTheory.idr is calling this a Kripke function space
|
||||
@@ -58,49 +73,51 @@ Env k n = Vect n (Val k)
|
||||
export
|
||||
eval : Env k n -> Tm k n -> Val k
|
||||
|
||||
export
|
||||
vapp : Val k -> Val k -> Val k
|
||||
vapp (VLam _ icit t) u = t 0 u
|
||||
vapp t u = VApp t u
|
||||
|
||||
-- weakenEnv : (l : Nat) -> Env k n -> Env (l + k) n
|
||||
-- thinEnv : (l : Nat) -> Env k n -> Env (l + k) n
|
||||
|
||||
weakenVal : {e : Nat} -> Val k -> Val (e + k)
|
||||
weakenVal (VVar x) = VVar (shift _ x)
|
||||
weakenVal (VRef str) = VRef str
|
||||
weakenVal (VApp x y) = VApp (weakenVal x) (weakenVal y)
|
||||
weakenVal (VLam str icit f) = VLam str icit
|
||||
thinVal : {e : Nat} -> Val k -> Val (e + k)
|
||||
thinVal (VVar x) = VVar (shift _ x)
|
||||
thinVal (VRef str) = VRef str
|
||||
thinVal (VApp x y) = VApp (thinVal x) (thinVal y)
|
||||
thinVal (VLam str icit f) = VLam str icit
|
||||
(\g, v => rewrite plusAssociative g e k in f (g + e) (rewrite sym $ plusAssociative g e k in v))
|
||||
weakenVal (VPi str icit x f) = VPi str icit (weakenVal {e} x)
|
||||
thinVal (VPi str icit x f) = VPi str icit (thinVal {e} x)
|
||||
(\g, v => rewrite plusAssociative g e k in f (g + e) (rewrite sym $ plusAssociative g e k in v))
|
||||
weakenVal VU = VU
|
||||
thinVal VU = VU
|
||||
|
||||
bind : (e : Nat) -> Val (plus e k) -> Env k n -> Env (e + k) (S n)
|
||||
bind e v env = v :: map weakenVal env
|
||||
bind e v env = v :: map thinVal env
|
||||
|
||||
-- is this weaken or thin?
|
||||
weaken : {e : Nat} -> Tm k (S n) -> Tm (plus e k) (S n)
|
||||
weaken (Local x) = Local (shift _ x)
|
||||
weaken (Bnd x) = Bnd x
|
||||
weaken (Ref str) = Ref str
|
||||
weaken (Lam str x t) = Lam str x (weaken t)
|
||||
weaken (App t u) = App (weaken t) (weaken u)
|
||||
weaken U = U
|
||||
weaken (Pi str x t u) = Pi str x (weaken t) (weaken u)
|
||||
weaken (Let str x t u v) = Let str x (weaken t) (weaken u) (weaken v)
|
||||
-- is this thin or thin?
|
||||
thin : {e : Nat} -> Tm k (S n) -> Tm (plus e k) (S n)
|
||||
thin (Local x) = Local (shift _ x)
|
||||
thin (Bnd x) = Bnd x
|
||||
thin (Ref str) = Ref str
|
||||
thin (Lam str x t) = Lam str x (thin t)
|
||||
thin (App t u) = App (thin t) (thin u)
|
||||
thin U = U
|
||||
thin (Pi str x t u) = Pi str x (thin t) (thin u)
|
||||
thin (Let str x t u v) = Let str x (thin t) (thin u) (thin v)
|
||||
|
||||
eval env (Local x) = VVar x -- this is a hole in intrinsic, vfree x in the other
|
||||
eval env (Ref x) = VRef x
|
||||
eval env (Bnd n) = index n env
|
||||
eval env (Lam x icit t) = VLam x icit (\e, u => eval (bind e u env) (weaken t))-- (MkClosure env t)
|
||||
eval env (Lam x icit t) = VLam x icit (\e, u => eval (bind e u env) (thin t))-- (MkClosure env t)
|
||||
eval env (App t u) = vapp (eval env t) (eval env u)
|
||||
eval env U = VU
|
||||
eval env (Pi x icit a b) = VPi x icit (eval env a) (\e, u => eval (bind e u env) (weaken b))
|
||||
eval env (Pi x icit a b) = VPi x icit (eval env a) (\e, u => eval (bind e u env) (thin b))
|
||||
-- This one we need to make
|
||||
eval env (Let x icit ty t u) = eval (eval env t :: env) u
|
||||
|
||||
vfresh : (l : Nat) -> Val (S l)
|
||||
vfresh l = VVar last
|
||||
|
||||
export
|
||||
quote : (k : Nat) -> Val k -> Tm 0 k
|
||||
quote l (VVar k) = Bnd (complement k) -- level to index
|
||||
quote l (VApp t u) = App (quote l t) (quote l u)
|
||||
@@ -110,6 +127,7 @@ quote l (VPi x icit a b) = Pi x icit (quote l a) (quote (S l) (b 1 $ vfresh l))
|
||||
quote l VU = U
|
||||
quote _ (VRef n) = Ref n
|
||||
|
||||
export
|
||||
nf : {n : Nat} -> Env 0 n -> Tm 0 n -> Tm 0 0
|
||||
nf env t = quote 0 (eval env t)
|
||||
|
||||
@@ -122,29 +140,29 @@ public export
|
||||
Types : Nat -> Type
|
||||
Types n = Vect n (Name, Lazy (Val n))
|
||||
|
||||
public export
|
||||
record Ctx (n : Nat) where
|
||||
constructor MkCtx
|
||||
env : Env k n -- for eval
|
||||
types : Types n -- name lookup, pp
|
||||
bds : Vect n BD -- meta creation
|
||||
lvl : Nat -- This is n, do we need it?
|
||||
-- Kovacs and Weirich use a position node
|
||||
pos : SourcePos
|
||||
-- public export
|
||||
-- record Ctx (n : Nat) where
|
||||
-- constructor MkCtx
|
||||
-- env : Env k n -- for eval
|
||||
-- types : Types n -- name lookup, pp
|
||||
-- bds : Vect n BD -- meta creation
|
||||
-- lvl : Nat -- This is n, do we need it?
|
||||
-- -- Kovacs and Weirich use a position node
|
||||
-- pos : SourcePos
|
||||
|
||||
%name Ctx ctx
|
||||
|
||||
public export
|
||||
emptyCtx : Ctx Z
|
||||
emptyCtx = MkCtx {k=0} [] [] [] 0 (0,0)
|
||||
-- %name Ctx ctx
|
||||
|
||||
-- public export
|
||||
-- bind : Name -> Lazy (Val (k + n)) -> Ctx n -> Ctx (S n)
|
||||
-- bind x a (MkCtx env types bds l pos) =
|
||||
-- MkCtx (VVar l :: env) ((x,a) :: types) (Bound :: bds) (l+1) pos
|
||||
-- emptyCtx : Ctx Z
|
||||
-- emptyCtx = MkCtx {k=0} [] [] [] 0 (0,0)
|
||||
|
||||
-- public export
|
||||
-- bindCtx : Name -> Lazy (Val (zz + n)) -> Ctx n -> Ctx (S n)
|
||||
-- bindCtx x a (MkCtx env types bds l pos) =
|
||||
-- MkCtx (VVar l :: env) ((x,a) :: map (map thinVal) types) (Bound :: bds) (l+1) pos
|
||||
|
||||
-- public export
|
||||
-- define : Name -> Val n -> Lazy (Val n) -> Ctx n -> Ctx (S n)
|
||||
-- define x v ty (MkCtx env types bds l pos) =
|
||||
-- MkCtx (v :: env) ((x,ty) :: types) (Defined :: bds) (l + 1) pos
|
||||
-- MkCtx (v :: env) ((x,ty) :: map (map thinVal) types) (Defined :: bds) (l + 1) pos
|
||||
|
||||
|
||||
Reference in New Issue
Block a user