-- First pass of compilation -- - work out arities and fully apply functions / constructors (currying) -- currying is problemmatic because we need to insert lambdas (η-expand) and -- it breaks all of the de Bruijn indices -- - expand metas (this is happening earlier) -- - erase stuff (there is another copy that essentially does the same thing) -- I could make names unique (e.q. on lambdas), but I might want that to vary per backend? module Lib.CompileExp import Prelude import Lib.Common import Lib.Types -- Name / Tm import Lib.TopContext import Lib.Prettier import Lib.Util import Lib.Ref2 import Data.SortedMap CExp : U data CAlt : U where CConAlt : String -> List String -> CExp -> CAlt -- REVIEW keep var name? CDefAlt : CExp -> CAlt -- literal CLitAlt : Literal -> CExp -> CAlt data CExp : U where CBnd : Int -> CExp CLam : Name -> CExp -> CExp CFun : List Name -> CExp -> CExp CApp : CExp -> List CExp -> Int -> CExp CCase : CExp -> List CAlt -> CExp CRef : Name -> CExp CMeta : Int -> CExp CLit : Literal -> CExp CLet : Name -> CExp -> CExp -> CExp CLetRec : Name -> CExp -> CExp -> CExp CErased : CExp -- I'm counting Lam in the term for arity. This matches what I need in -- code gen. lamArity : Tm -> Nat lamArity (Lam _ _ _ _ t) = S (lamArity t) lamArity _ = Z -- This is how much we want to curry at top level -- leading lambda Arity is used for function defs and metas -- TODO - figure out how this will work with erasure arityForName : {{Ref2 Defs St}} → FC -> QName -> M Nat arityForName fc nm = do defs <- getRef Defs case lookupMap' nm defs of Nothing => error fc "Name \{show nm} not in scope" (Just Axiom) => pure Z (Just (TCon arity strs)) => pure $ cast arity (Just (DCon k str)) => pure $ cast k (Just (Fn t)) => pure $ lamArity t (Just (PrimTCon arity)) => pure $ cast arity (Just (PrimFn t arity used)) => pure arity compileTerm : {{Ref2 Defs St}} → Tm -> M CExp -- need to eta out extra args, fill in the rest of the apps apply : CExp -> List CExp -> SnocList CExp -> Nat -> M CExp -- out of args, make one up (fix that last arg) apply t Nil acc (S k) = pure $ CApp t (acc <>> Nil) (1 + cast k) apply t (x :: xs) acc (S k) = apply t xs (acc :< x) k -- once we hit zero, we fold the rest apply t ts acc Z = go (CApp t (acc <>> Nil) 0) ts where go : CExp -> List CExp -> M CExp -- drop zero arg call go (CApp t Nil 0) args = go t args go t Nil = pure t go t (arg :: args) = go (CApp t (arg :: Nil) 0) args compileTerm (Bnd _ k) = pure $ CBnd k -- need to eta expand to arity compileTerm t@(Ref fc nm) = do arity <- arityForName fc nm case arity of -- we don't need to curry functions that take one argument (S Z) => pure $ CRef (show nm) _ => apply (CRef (show nm)) Nil Lin arity compileTerm (Meta _ k) = pure $ CRef "meta$\{show k}" -- FIXME compileTerm (Lam _ nm _ _ t) = CLam nm <$> compileTerm t compileTerm tm@(App _ _ _) = case funArgs tm of (Meta _ k, args) => do error (getFC tm) "Compiling an unsolved meta \{show tm}" -- info (getFC tm) "Compiling an unsolved meta \{show tm}" -- pure $ CApp (CRef "Meta\{show k}") Nil 0 (t@(Ref fc nm), args) => do args' <- traverse compileTerm args arity <- arityForName fc nm apply (CRef (show nm)) args' Lin arity (t, args) => do debug $ \ _ => "apply other \{render 90 $ pprint Nil t}" t' <- compileTerm t args' <- traverse compileTerm args apply t' args' Lin Z -- error (getFC t) "Don't know how to apply \{showTm t}" compileTerm (UU _) = pure $ CRef "U" compileTerm (Pi _ nm icit rig t u) = do t' <- compileTerm t u' <- compileTerm u pure $ CApp (CRef "PiType") (t' :: CLam nm u' :: Nil) 0 compileTerm (Case _ t alts) = do t' <- compileTerm t alts' <- for alts $ \case CaseDefault tm => CDefAlt <$> compileTerm tm -- we use the base name for the tag, some primitives assume this CaseCons (QN ns nm) args tm => CConAlt nm args <$> compileTerm tm CaseLit lit tm => CLitAlt lit <$> compileTerm tm pure $ CCase t' alts' compileTerm (Lit _ lit) = pure $ CLit lit compileTerm (Let _ nm t u) = do t' <- compileTerm t u' <- compileTerm u pure $ CLet nm t' u' compileTerm (LetRec _ nm _ t u) = do t' <- compileTerm t u' <- compileTerm u pure $ CLetRec nm t' u' compileTerm (Erased _) = pure CErased compileFun : {{Ref2 Defs St}} → Tm -> M CExp compileFun tm = go tm Lin where go : Tm -> SnocList String -> M CExp go (Lam _ nm _ _ t) acc = go t (acc :< nm) go tm Lin = compileTerm tm go tm args = CFun (args <>> Nil) <$> compileTerm tm