module Concat data Nat : U where Z : Nat S : Nat -> Nat infixl 7 _+_ _+_ : Nat -> Nat -> Nat Z + m = m S n + m = S (n + m) infixr 3 _::_ data List : U -> U where Nil : {A : U} -> List A _::_ : {A : U} -> A -> List A -> List A length : {A : U} -> List A -> Nat length Nil = Z length (x :: xs) = S (length xs) infixl 2 _++_ _++_ : {A : U} -> List A -> List A -> List A Nil ++ ys = ys x :: xs ++ ys = x :: (xs ++ ys) infixl 1 _≡_ data _≡_ : {A : U} -> A -> A -> U where Refl : {A : U} {a : A} -> a ≡ a replace : {A : U} {a b : A} -> (P : A -> U) -> a ≡ b -> P a -> P b replace p Refl x = x cong : {A B : U} {a b : A} -> (f : A -> B) -> a ≡ b -> f a ≡ f b cong f Refl = Refl thm : {A : U} (xs ys : List A) -> length (xs ++ ys) ≡ length xs + length ys thm Nil ys = Refl thm (x :: xs) ys = cong S (thm xs ys)