module Prelude id : ∀ a. a → a id x = x the : (a : U) → a → a the _ a = a const : ∀ a b. a → b → a const a b = a data Unit = MkUnit data Bool = True | False not : Bool → Bool not True = False not False = True -- In Idris, this is lazy in the second arg, we're not doing -- magic laziness for now, it's messy infixr 4 _||_ _||_ : Bool → Bool → Bool True || _ = True False || b = b infixr 5 _&&_ _&&_ : Bool → Bool → Bool False && b = False True && b = b infixl 6 _==_ class Eq a where _==_ : a → a → Bool infixl 6 _/=_ _/=_ : ∀ a. {{Eq a}} → a → a → Bool a /= b = not (a == b) data Nat = Z | S Nat pred : Nat → Nat pred Z = Z pred (S k) = k instance Eq Nat where Z == Z = True S n == S m = n == m x == y = False data Maybe a = Just a | Nothing fromMaybe : ∀ a. a → Maybe a → a fromMaybe a Nothing = a fromMaybe _ (Just a) = a maybe : ∀ a b. b → (a → b) → Maybe a → b maybe def f (Just a) = f a maybe def f Nothing = def data Either a b = Left a | Right b infixr 7 _::_ data List a = Nil | a :: List a length : ∀ a. List a → Nat length Nil = Z length (x :: xs) = S (length xs) infixl 7 _:<_ data SnocList a = Lin | SnocList a :< a -- 'chips' infixr 6 _<>>_ _<><_ _<>>_ : ∀ a. SnocList a → List a → List a Lin <>> ys = ys (xs :< x) <>> ys = xs <>> x :: ys _<><_ : ∀ a. SnocList a → List a → SnocList a xs <>< Nil = xs xs <>< (y :: ys) = (xs :< y) <>< ys -- This is now handled by the parser, and LHS becomes `f a`. -- infixr 0 _$_ -- _$_ : ∀ a b. (a -> b) -> a -> b -- f $ a = f a infixr 8 _×_ infixr 2 _,_ data a × b = (a,b) fst : ∀ a b. a × b → a fst (a,b) = a snd : ∀ a b. a × b → b snd (a,b) = b -- Monad class Monad (m : U → U) where bind : {0 a b} → m a → (a → m b) → m b pure : {0 a} → a → m a infixl 1 _>>=_ _>>_ _>>=_ : ∀ m a b. {{Monad m}} -> (m a) -> (a -> m b) -> m b ma >>= amb = bind ma amb _>>_ : ∀ m a b. {{Monad m}} -> m a -> m b -> m b ma >> mb = ma >>= (\ _ => mb) join : ∀ m a. {{Monad m}} → m (m a) → m a join mma = mma >>= id -- Equality infixl 1 _≡_ data _≡_ : {A : U} -> A -> A -> U where Refl : {A : U} -> {a : A} -> a ≡ a replace : {A : U} {a b : A} -> (P : A -> U) -> a ≡ b -> P a -> P b replace p Refl x = x cong : {A B : U} {a b : A} -> (f : A -> B) -> a ≡ b -> f a ≡ f b sym : {A : U} -> {a b : A} -> a ≡ b -> b ≡ a sym Refl = Refl -- Functor class Functor (m : U → U) where map : {0 a b} → (a → b) → m a → m b infixr 4 _<$>_ _<$_ _<$>_ : {0 f} {{Functor f}} {0 a b} → (a → b) → f a → f b f <$> ma = map f ma _<$_ : ∀ f a b. {{Functor f}} → b → f a → f b a <$ b = const a <$> b instance Functor Maybe where map f Nothing = Nothing map f (Just a) = Just (f a) reverse : ∀ a. List a → List a reverse {a} = go Nil where go : List a → List a → List a go acc Nil = acc go acc (x :: xs) = go (x :: acc) xs instance Functor List where map f xs = go f xs Nil where go : ∀ a b. (a → b) → List a → List b → List b go f Nil ys = reverse ys go f (x :: xs) ys = go f xs (f x :: ys) -- map f Nil = Nil -- map f (x :: xs) = f x :: map f xs instance Functor SnocList where map f Lin = Lin map f (xs :< x) = map f xs :< f x -- TODO this probably should depend on / entail Functor infixl 3 _<*>_ _<*_ _*>_ class Applicative (f : U → U) where -- appIsFunctor : Functor f return : {0 a} → a → f a _<*>_ : {0 a b} -> f (a → b) → f a → f b _<*_ : ∀ f a b. {{Applicative f}} → f a → f b → f a fa <* fb = return const <*> fa <*> fb _*>_ : ∀ f a b. {{Functor f}} {{Applicative f}} → f a → f b → f b a *> b = map (const id) a <*> b class Traversable (t : U → U) where traverse : ∀ f a b. {{Applicative f}} → (a → f b) → t a → f (t b) instance Traversable List where traverse f Nil = return Nil traverse f (x :: xs) = return _::_ <*> f x <*> traverse f xs traverse_ : ∀ t f a b. {{Traversable t}} {{Applicative f}} → (a → f b) → t a → f Unit traverse_ f xs = return (const MkUnit) <*> traverse f xs for : {t : U → U} {f : U → U} → {{Traversable t}} {{appf : Applicative f}} → {a : U} → {b : U} → t a → (a → f b) → f (t b) for stuff fun = traverse fun stuff for_ : {t : U → U} {f : U → U} → {{Traversable t}} {{appf : Applicative f}} → {a : U} → {b : U} → t a → (a → f b) → f Unit for_ stuff fun = return (const MkUnit) <*> traverse fun stuff instance Applicative Maybe where return a = Just a Nothing <*> _ = Nothing Just f <*> fa = f <$> fa infixr 2 _<|>_ class Alternative (m : U → U) where _<|>_ : {0 a} → m a → m a → m a instance Alternative Maybe where Nothing <|> x = x Just x <|> _ = Just x -- Semigroup infixl 8 _<+>_ class Semigroup a where _<+>_ : a → a → a infixl 7 _+_ class Add a where _+_ : a → a → a infixl 8 _*_ _/_ class Mul a where _*_ : a → a → a class Div a where _/_ : a → a → a instance Add Nat where Z + m = m S n + m = S (n + m) instance Mul Nat where Z * _ = Z S n * m = m + n * m pfunc mod : Int → Int → Int := `(a,b) => a % b` infixl 7 _-_ class Sub a where _-_ : a → a → a instance Sub Nat where Z - m = Z n - Z = n S n - S m = n - m infixr 7 _++_ class Concat a where _++_ : a → a → a pfunc sconcat : String → String → String := `(x,y) => x + y` instance Concat String where _++_ = sconcat pfunc jsEq uses (True False) : ∀ a. a → a → Bool := `(_, a, b) => a == b ? True : False` pfunc jsLT uses (True False) : ∀ a. a → a → Bool := `(_, a, b) => a < b ? True : False` pfunc jsShow : ∀ a . a → String := `(_,a) => ''+a` instance Eq Int where a == b = jsEq a b instance Eq String where a == b = jsEq a b instance Eq Char where a == b = jsEq a b ptype Array : U → U pfunc listToArray : {a : U} -> List a -> Array a := ` (a, l) => { let rval = [] while (l.tag !== 'Nil') { rval.push(l.h1) l = l.h2 } return rval } ` pfunc alen : {0 a : U} -> Array a -> Int := `(a,arr) => arr.length` pfunc aget : {0 a : U} -> Array a -> Int -> a := `(a, arr, ix) => arr[ix]` pfunc aempty : {0 a : U} -> Unit -> Array a := `() => []` pfunc arrayToList uses (Nil _::_) : {0 a} → Array a → List a := `(a,arr) => { let rval = Nil(null) for (let i = arr.length - 1;i >= 0; i--) { rval = _$3A$3A_(a, arr[i], rval) } return rval }` -- for now I'll run this in JS pfunc lines uses (arrayToList) : String → List String := `(s) => arrayToList(null,s.split('\n'))` pfunc p_strHead : (s : String) -> Char := `(s) => s[0]` pfunc p_strTail : (s : String) -> String := `(s) => s[0]` pfunc trim : String -> String := `s => s.trim()` pfunc split uses (Nil _::_) : String -> String -> List String := `(s, by) => { let parts = s.split(by) let rval = Nil(null) parts.reverse() parts.forEach(p => { rval = _$3A$3A_(null, p, rval) }) return rval }` pfunc slen : String -> Int := `s => s.length` pfunc sindex : String -> Int -> Char := `(s,i) => s[i]` -- TODO represent Nat as number at runtime pfunc natToInt : Nat -> Int := `(n) => { let rval = 0 while (n.tag === 'S') { n = n.h0 rval++ } return rval }` pfunc intToNat uses (Z S) : Int -> Nat := `(n) => { let rval = Z for (;n>0;n--) rval = S(rval); return rval; }` pfunc fastConcat uses (listToArray) : List String → String := `(xs) => listToArray(null, xs).join('')` pfunc replicate uses (natToInt) : Nat -> Char → String := `(n,c) => c.repeat(natToInt(n))` -- I don't want to use an empty type because it would be a proof of void ptype World data IORes a = MkIORes a World IO : U -> U IO a = World -> IORes a instance Monad IO where bind ma mab = \ w => case ma w of MkIORes a w => mab a w pure = MkIORes bindList : ∀ a b. List a → (a → List b) → List b instance ∀ a. Concat (List a) where Nil ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) instance Monad List where pure a = a :: Nil bind Nil amb = Nil bind (x :: xs) amb = amb x ++ bind xs amb -- This is traverse, but we haven't defined Traversable yet mapA : ∀ m. {{Applicative m}} {0 a b} → (a → m b) → List a → m (List b) mapA f Nil = return Nil mapA f (x :: xs) = return _::_ <*> f x <*> mapA f xs mapM : ∀ m. {{Monad m}} {0 a b} → (a → m b) → List a → m (List b) mapM f Nil = pure Nil mapM f (x :: xs) = do b <- f x bs <- mapM f xs pure (b :: bs) class HasIO (m : U -> U) where liftIO : ∀ a. IO a → m a instance HasIO IO where liftIO a = a pfunc primPutStrLn uses (MkIORes MkUnit) : String -> IO Unit := `(s) => (w) => { console.log(s) return MkIORes(null,MkUnit,w) }` putStrLn : ∀ io. {{HasIO io}} -> String -> io Unit putStrLn s = liftIO (primPutStrLn s) pfunc showInt : Int -> String := `(i) => String(i)` class Show a where show : a → String instance Show String where show a = a instance Show Int where show = showInt pfunc ord : Char -> Int := `(c) => c.charCodeAt(0)` pfunc chr : Int → Char := `(c) => String.fromCharCode(c)` pfunc unpack uses (Nil _::_) : String -> List Char := `(s) => { let acc = Nil(null) for (let i = s.length - 1; 0 <= i; i--) acc = _$3A$3A_(null, s[i], acc) return acc }` pfunc pack : List Char → String := `(cs) => { let rval = '' while (cs.tag === '_::_') { rval += cs.h1 cs = cs.h2 } return rval } ` pfunc debugStr uses (natToInt listToArray) : ∀ a. a → String := `(_, obj) => { const go = (obj) => { if (obj === null) return "_" if (typeof obj == 'bigint') return ''+obj if (obj.tag === '_,_') { let rval = '(' while (obj?.tag === '_,_') { rval += go(obj.h2) + ', ' obj = obj.h3 } return rval + go(obj) + ')' } if (obj?.tag === '_::_' || obj?.tag === 'Nil') { let stuff = listToArray(null,obj) return '['+(stuff.map(go).join(', '))+']' } if (obj instanceof Array) { return 'io['+(obj.map(go).join(', '))+']' } if (obj?.tag === 'S' || obj?.tag === 'Z') { return ''+natToInt(obj) } else if (obj?.tag) { let rval = '('+obj.tag for(let i=0;;i++) { let key = 'h'+i if (!(key in obj)) break rval += ' ' + go(obj[key]) } return rval+')' } else { return JSON.stringify(obj) } } return go(obj) }` debugLog : ∀ a. a → IO Unit debugLog a = putStrLn (debugStr a) pfunc stringToInt : String → Int := `(s) => { let rval = Number(s) if (isNaN(rval)) throw new Error(s + " is NaN") return rval }` -- TODO - add Foldable foldl : ∀ A B. (B -> A -> B) -> B -> List A -> B foldl f acc Nil = acc foldl f acc (x :: xs) = foldl f (f acc x) xs foldr : ∀ a b. (a → b → b) → b → List a → b foldr f b Nil = b foldr f b (x :: xs) = f x (foldr f b xs) infixl 9 _∘_ _∘_ : {A B C : U} -> (B -> C) -> (A -> B) -> A -> C (f ∘ g) x = f (g x) pfunc addInt : Int → Int → Int := `(x,y) => x + y` pfunc mulInt : Int → Int → Int := `(x,y) => x * y` pfunc divInt : Int → Int → Int := `(x,y) => x / y | 0` pfunc subInt : Int → Int → Int := `(x,y) => x - y` pfunc ltInt uses (True False) : Int → Int → Bool := `(x,y) => x < y ? True : False` instance Mul Int where x * y = mulInt x y instance Add Int where x + y = addInt x y instance Sub Int where x - y = subInt x y instance Div Int where x / y = divInt x y printLn : {m} {{HasIO m}} {a} {{Show a}} → a → m Unit printLn a = putStrLn (show a) -- opaque JSObject ptype JSObject -- Like Idris1, but not idris2, we need {a} to put a in scope. span : ∀ a. (a -> Bool) -> List a -> List a × List a span {a} f xs = go xs Nil where go : List a -> List a -> List a × List a go Nil left = (reverse left, Nil) go (x :: xs) left = if f x then go xs (x :: left) else (reverse left, x :: xs) instance Show Nat where show n = show (natToInt n) enumerate : ∀ a. List a → List (Nat × a) enumerate {a} xs = go Z xs where go : Nat → List a → List (Nat × a) go k Nil = Nil go k (x :: xs) = (k,x) :: go (S k) xs filter : ∀ a. (a → Bool) → List a → List a filter pred Nil = Nil filter pred (x :: xs) = if pred x then x :: filter pred xs else filter pred xs drop : ∀ a. Nat -> List a -> List a drop _ Nil = Nil drop Z xs = xs drop (S k) (x :: xs) = drop k xs take : ∀ a. Nat -> List a -> List a take {a} n xs = go n xs Lin where go : Nat → List a → SnocList a → List a go (S k) (x :: xs) acc = go k xs (acc :< x) go _ _ acc = acc <>> Nil getAt : ∀ a. Nat → List a → Maybe a getAt _ Nil = Nothing getAt Z (x :: xs) = Just x getAt (S k) (x :: xs) = getAt k xs splitOn : ∀ a. {{Eq a}} → a → List a → List (List a) splitOn {a} v xs = go Nil xs where go : List a → List a → List (List a) go acc Nil = reverse acc :: Nil go acc (x :: xs) = if x == v then reverse acc :: go Nil xs else go (x :: acc) xs class Inhabited a where default : a instance ∀ a. Inhabited (List a) where default = Nil getAt! : ∀ a. {{Inhabited a}} → Nat → List a → a getAt! _ Nil = default getAt! Z (x :: xs) = x getAt! (S k) (x :: xs) = getAt! k xs instance ∀ a. Applicative (Either a) where return b = Right b Right x <*> Right y = Right (x y) Left x <*> _ = Left x Right x <*> Left y = Left y instance ∀ a. Monad (Either a) where pure x = Right x bind (Right x) mab = mab x bind (Left x) mab = Left x instance Monad Maybe where pure x = Just x bind Nothing mab = Nothing bind (Just x) mab = mab x elem : ∀ a. {{Eq a}} → a → List a → Bool elem v Nil = False elem v (x :: xs) = if v == x then True else elem v xs -- TODO no empty value on my `Add`, I need a group.. -- sum : ∀ a. {{Add a}} → List a → a -- sum xs = foldl _+_ pfunc trace uses (debugStr) : ∀ a. String -> a -> a := `(_, msg, a) => { console.log(msg,debugStr(_,a)); return a }` mapMaybe : ∀ a b. (a → Maybe b) → List a → List b mapMaybe f Nil = Nil mapMaybe f (x :: xs) = case f x of Just y => y :: mapMaybe f xs Nothing => mapMaybe f xs zip : ∀ a b. List a → List b → List (a × b) zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys zip _ _ = Nil -- TODO add double literals ptype Double pfunc intToDouble : Int → Double := `(x) => x` pfunc doubleToInt : Double → Int := `(x) => x` pfunc addDouble : Double → Double → Double := `(x,y) => x + y` pfunc subDouble : Double → Double → Double := `(x,y) => x - y` pfunc mulDouble : Double → Double → Double := `(x,y) => x * y` pfunc divDouble : Double → Double → Double := `(x,y) => x / y` pfunc sqrtDouble : Double → Double := `(x) => Math.sqrt(x)` pfunc ceilDouble : Double → Double := `(x) => Math.ceil(x)` instance Add Double where x + y = addDouble x y instance Sub Double where x - y = subDouble x y instance Mul Double where x * y = mulDouble x y instance Div Double where x / y = divDouble x y ptype IOArray : U → U pfunc newArray uses (MkIORes) : ∀ a. Int → a → IO (IOArray a) := `(_, n, v) => (w) => MkIORes(null,Array(n).fill(v),w)` pfunc arrayGet : ∀ a. IOArray a → Int → IO a := `(_, arr, ix) => w => MkIORes(null, arr[ix], w)` pfunc arraySet uses (MkUnit) : ∀ a. IOArray a → Int → a → IO Unit := `(_, arr, ix, v) => w => { arr[ix] = v return MkIORes(null, MkUnit, w) }` pfunc arraySize uses (MkIORes) : ∀ a. IOArray a → IO Int := `(_, arr) => w => MkIORes(null, arr.length, w)` pfunc ioArrayToList uses (Nil _::_ MkIORes) : {0 a} → IOArray a → IO (List a) := `(a,arr) => w => { let rval = Nil(null) for (let i = arr.length - 1;i >= 0; i--) { rval = _$3A$3A_(a, arr[i], rval) } return MkIORes(null, rval, w) }` pfunc listToIOArray uses (MkIORes) : {0 a} → List a → IO (Array a) := `(a,list) => w => { let rval = [] while (list.tag === '_::_') { rval.push(list.h1) list = list.h2 } return MkIORes(null,rval,w) }` class Cast a b where cast : a → b instance Cast Nat Int where cast = natToInt instance Cast Int Double where cast = intToDouble instance Applicative IO where return a = \ w => MkIORes a w f <*> a = \ w => let (MkIORes f w) = f w in let (MkIORes a w) = a w in MkIORes (f a) w class Bifunctor (f : U → U → U) where bimap : ∀ a b c d. (a → c) → (b → d) → f a b → f c d mapFst : ∀ a b c f. {{Bifunctor f}} → (a → c) → f a b → f c b mapFst f ab = bimap f id ab mapSnd : ∀ a b c f. {{Bifunctor f}} → (b → c) → f a b → f a c mapSnd f ab = bimap id f ab isNothing : ∀ a. Maybe a → Bool isNothing Nothing = True isNothing _ = False instance Bifunctor _×_ where bimap f g (a,b) = (f a, g b) instance Functor IO where map f a = bind a $ \ a => pure (f a) uncurry : ∀ a b c. (a -> b -> c) -> (a × b) -> c uncurry f (a,b) = f a b -- TODO Idris has a tail recursive version of this instance Applicative List where return a = a :: Nil Nil <*> _ = Nil fs <*> ys = join $ map (\ f => map f ys) fs tail : ∀ a. List a → List a tail Nil = Nil tail (x :: xs) = xs data Ordering = LT | EQ | GT instance Eq Ordering where LT == LT = True EQ == EQ = True GT == GT = True _ == _ = False -- FIXME There is a subtle issue here with shadowing if the file defines a GT in its own namespace -- We end up chosing that an assigning to GT, which cause a lot of trouble. -- Prelude.GT is not in scope, because we've depended on the other one. pfunc jsCompare uses (LT EQ GT) : ∀ a. a → a → Ordering := `(_, a, b) => a == b ? EQ : a < b ? LT : GT` infixl 6 _<_ _<=_ _>_ class Ord a where compare : a → a → Ordering _<_ : ∀ a. {{Ord a}} -> a → a → Bool a < b = compare a b == LT _<=_ : ∀ a. {{Ord a}} → a → a → Bool a <= b = compare a b /= GT _>_ : ∀ a. {{Ord a}} → a → a → Bool a > b = compare a b == GT search : ∀ cl. {{cl}} -> cl search {{x}} = x instance Ord Nat where compare Z Z = EQ compare _ Z = GT compare Z (S _) = LT compare (S n) (S m) = compare n m instance Ord Int where compare a b = jsCompare a b instance Ord Char where compare a b = jsCompare a b flip : ∀ a b c. (a → b → c) → (b → a → c) flip f b a = f a b partition : ∀ a. (a → Bool) → List a → List a × List a partition {a} pred xs = go xs Nil Nil where go : List a → List a → List a → List a × List a go Nil as bs = (as, bs) go (x :: xs) as bs = if pred x then go xs (x :: as) bs else go xs as (x :: bs) -- probably not super efficient, but it works qsort : ∀ a. (a → a → Bool) → List a → List a qsort lt Nil = Nil qsort lt (x :: xs) = qsort lt (filter (λ y => not $ lt x y) xs) ++ x :: qsort lt (filter (lt x) xs) ordNub : ∀ a. {{Eq a}} {{Ord a}} -> List a -> List a ordNub {a} {{ordA}} xs = go $ qsort _<_ xs where go : List a → List a go (a :: b :: xs) = if a == b then go (a :: xs) else a :: go (b :: xs) go t = t nub : ∀ a. {{Eq a}} → List a → List a nub Nil = Nil nub (x :: xs) = if elem x xs then nub xs else x :: nub xs ite : ∀ a. Bool → a → a → a ite c t e = if c then t else e instance Ord String where compare a b = jsCompare a b instance Cast Int Nat where cast n = intToNat n instance Show Char where show c = jsShow c swap : ∀ a b. a × b → b × a swap (a,b) = (b,a) instance ∀ a b. {{Eq a}} {{Eq b}} → Eq (a × b) where (a,b) == (c,d) = a == c && b == d instance ∀ a b. {{Ord a}} {{Ord b}} → Ord (a × b) where compare (a,b) (c,d) = case compare a c of EQ => compare b d res => res instance ∀ a. {{Eq a}} → Eq (List a) where Nil == Nil = True (x :: xs) == (y :: ys) = if x == y then xs == ys else False _ == _ = False find : ∀ a. (a → Bool) → List a → Maybe a find f Nil = Nothing find f (x :: xs) = if f x then Just x else find f xs -- TODO this would be faster, but less pure as a primitive -- fastConcat might be a good compromise joinBy : String → List String → String joinBy _ Nil = "" joinBy _ (x :: Nil) = x joinBy s (x :: y :: xs) = joinBy s ((x ++ s ++ y) :: xs) snoc : ∀ a. List a → a → List a snoc xs x = xs ++ (x :: Nil) instance ∀ a b. {{Show a}} {{Show b}} → Show (a × b) where show (a,b) = "(" ++ show a ++ "," ++ show b ++ ")" instance ∀ a. {{Show a}} → Show (List a) where show xs = joinBy ", " $ map show xs -- For now, I'm not having the compiler do this automatically Lazy : U → U Lazy a = Unit → a force : ∀ a. Lazy a → a force f = f MkUnit -- unlike Idris, user will have to write \ _ => ... when : ∀ f. {{Applicative f}} → Bool → Lazy (f Unit) → f Unit when b fa = if b then force fa else return MkUnit unless : ∀ f. {{Applicative f}} → Bool → Lazy (f Unit) → f Unit unless b fa = when (not b) fa instance ∀ a. {{Ord a}} → Ord (List a) where compare Nil Nil = EQ compare Nil ys = LT compare xs Nil = GT compare (x :: xs) (y :: ys) = case compare x y of EQ => compare xs ys c => c isSpace : Char -> Bool isSpace ' ' = True isSpace '\n' = True isSpace _ = False isDigit : Char -> Bool isDigit '0' = True isDigit '1' = True isDigit '2' = True isDigit '3' = True isDigit '4' = True isDigit '5' = True isDigit '6' = True isDigit '7' = True isDigit '8' = True isDigit '9' = True isDigit _ = False isUpper : Char → Bool isUpper c = let o = ord c in 64 < o && o < 91 isAlphaNum : Char → Bool isAlphaNum c = let o = ord c in 64 < o && o < 91 || 47 < o && o < 58 || 96 < o && o < 123 ignore : ∀ f a. {{Functor f}} → f a → f Unit ignore = map (const MkUnit) instance ∀ a. {{Show a}} → Show (Maybe a) where show Nothing = "Nothing" show (Just a) = "Just {show a}" -- TODO pfunc isPrefixOf uses (True False): String → String → Bool := `(pfx, s) => s.startsWith(pfx) ? True : False` pfunc isSuffixOf uses (True False): String → String → Bool := `(pfx, s) => s.endsWith(pfx) ? True : False` pfunc strIndex : String → Int → Char := `(s, ix) => s[ix]` instance ∀ a. {{Show a}} → Show (SnocList a) where show xs = show (xs <>> Nil) getAt' : ∀ a. Int → List a → Maybe a getAt' i xs = getAt (cast i) xs length' : ∀ a. List a → Int length' xs = go xs 0 where go : ∀ a. List a → Int → Int go Nil acc = acc go (x :: xs) acc = go xs (acc + 1) unlines : List String → String unlines lines = joinBy "\n" lines -- TODO inherit Semigroup class Monoid a where neutral : a findIndex' : ∀ a. (a → Bool) → List a → Maybe Int findIndex' {a} pred xs = go xs 0 where go : List a → Int → Maybe Int go Nil ix = Nothing go (x :: xs) ix = if pred x then Just ix else go xs (ix + 1) pfunc fatalError : ∀ a. String → a := `(_, msg) => { throw new Error(msg) }` foldlM : ∀ m a e. {{Monad m}} → (a → e → m a) → a → List e → m a foldlM f a xs = foldl (\ ma b => ma >>= flip f b) (pure a) xs