module Data.SortedMap import Prelude data T23 : Nat -> U -> U -> U where Leaf : ∀ k v. k -> v -> T23 Z k v Node2 : ∀ h k v. T23 h k v -> k -> T23 h k v -> T23 (S h) k v Node3 : ∀ h k v. T23 h k v -> k -> T23 h k v -> k -> T23 h k v -> T23 (S h) k v lookupT23 : ∀ h k v. (k → k → Ordering) -> k -> T23 h k v -> Maybe (k × v) lookupT23 compare key (Leaf k v)= case compare k key of EQ => Just (k,v) _ => Nothing lookupT23 compare key (Node2 t1 k1 t2) = case compare key k1 of GT => lookupT23 compare key t2 _ => lookupT23 compare key t1 lookupT23 compare key (Node3 t1 k1 t2 k2 t3) = case compare key k1 of GT => case compare key k2 of GT => lookupT23 compare key t3 _ => lookupT23 compare key t2 _ => lookupT23 compare key t1 insertT23 : ∀ h k v. (k → k → Ordering) -> k -> v -> T23 h k v -> Either (T23 h k v) (T23 h k v × k × T23 h k v) insertT23 compare key value (Leaf k v) = case compare key k of EQ => Left (Leaf key value) LT => Right (Leaf key value, key, Leaf k v) GT => Right (Leaf k v, k, Leaf key value) insertT23 compare key value (Node2 t1 k1 t2) = case compare key k1 of GT => case insertT23 compare key value t2 of Left t2' => Left (Node2 t1 k1 t2') Right (a,b,c) => Left (Node3 t1 k1 a b c) _ => case insertT23 compare key value t1 of Left t1' => Left (Node2 t1' k1 t2) Right (a,b,c) => Left (Node3 a b c k1 t2) insertT23 compare key value (Node3 t1 k1 t2 k2 t3) = case compare key k1 of GT => case compare key k2 of GT => case insertT23 compare key value t3 of Left t3' => Left (Node3 t1 k1 t2 k2 t3') Right (a,b,c) => Right (Node2 t1 k1 t2, k2, Node2 a b c) _ => case insertT23 compare key value t2 of Left t2' => Left (Node3 t1 k1 t2' k2 t3) Right (a,b,c) => Right (Node2 t1 k1 a, b, Node2 c k2 t3) _ => case insertT23 compare key value t1 of Left t1' => Left (Node3 t1' k1 t2 k2 t3) Right (a,b,c) => Right (Node2 a b c, k1, Node2 t2 k2 t3) -- This is cribbed from Idris. Deleting nodes takes a bit of code. Hole : Nat → U → U → U Hole Z k v = Unit Hole (S n) k v = T23 n k v Node4 : ∀ k v h. T23 h k v → k → T23 h k v → k → T23 h k v → k → T23 h k v → T23 (S (S h)) k v Node4 t1 k1 t2 k2 t3 k3 t4 = Node2 (Node2 t1 k1 t2) k2 (Node2 t3 k3 t4) Node5 : ∀ k v h. T23 h k v → k → T23 h k v → k → T23 h k v → k → T23 h k v → k → T23 h k v → T23 (S (S h)) k v Node5 a b c d e f g h i = Node2 (Node2 a b c) d (Node3 e f g h i) Node6 : ∀ k v h. T23 h k v → k → T23 h k v → k → T23 h k v → k → T23 h k v → k → T23 h k v → k → T23 h k v → T23 (S (S h)) k v Node6 a b c d e f g h i j k = Node2 (Node3 a b c d e) f (Node3 g h i j k) Node7 : ∀ k v h. T23 h k v → k → T23 h k v → k → T23 h k v → k → T23 h k v → k → T23 h k v → k → T23 h k v → k → T23 h k v → T23 (S (S h)) k v Node7 a b c d e f g h i j k l m = Node3 (Node3 a b c d e) f (Node2 g h i) j (Node2 k l m) merge1 : ∀ k v h. T23 h k v → k → T23 (S h) k v → k → T23 (S h) k v → T23 (S (S h)) k v merge1 a b (Node2 c d e) f (Node2 g h i) = Node5 a b c d e f g h i merge1 a b (Node2 c d e) f (Node3 g h i j k) = Node6 a b c d e f g h i j k merge1 a b (Node3 c d e f g) h (Node2 i j k) = Node6 a b c d e f g h i j k merge1 a b (Node3 c d e f g) h (Node3 i j k l m) = Node7 a b c d e f g h i j k l m merge2 : ∀ k v h. T23 (S h) k v → k → T23 h k v → k → T23 (S h) k v → T23 (S (S h)) k v merge2 (Node2 a b c) d e f (Node2 g h i) = Node5 a b c d e f g h i merge2 (Node2 a b c) d e f (Node3 g h i j k) = Node6 a b c d e f g h i j k merge2 (Node3 a b c d e) f g h (Node2 i j k) = Node6 a b c d e f g h i j k merge2 (Node3 a b c d e) f g h (Node3 i j k l m) = Node7 a b c d e f g h i j k l m merge3 : ∀ k v h. T23 (S h) k v → k → T23 (S h) k v → k → T23 h k v → T23 (S (S h)) k v merge3 (Node2 a b c) d (Node2 e f g) h i = Node5 a b c d e f g h i merge3 (Node2 a b c) d (Node3 e f g h i) j k = Node6 a b c d e f g h i j k merge3 (Node3 a b c d e) f (Node2 g h i) j k = Node6 a b c d e f g h i j k merge3 (Node3 a b c d e) f (Node3 g h i j k) l m = Node7 a b c d e f g h i j k l m -- height is erased in the data everywhere but the top, but needed for case -- I wonder if we could use a 1 + 1 + 1 type instead of Either Tree Hole and condense this deleteT23 : ∀ k v. (k → k → Ordering) → (h : Nat) -> k -> T23 h k v -> Either (T23 h k v) (Hole h k v) deleteT23 compare Z key (Leaf k v) = case compare k key of EQ => Right MkUnit _ => Left (Leaf k v) deleteT23 compare (S Z) key (Node2 t1 k1 t2) = case compare key k1 of GT => case deleteT23 compare Z key t2 of Left t2 => Left (Node2 t1 k1 t2) Right MkUnit => Right t1 _ => case deleteT23 compare Z key t1 of Left t1 => Left (Node2 t1 k1 t2) Right _ => Right t2 deleteT23 compare (S Z) key (Node3 t1 k1 t2 k2 t3) = case compare key k1 of GT => case compare key k2 of GT => case deleteT23 compare _ key t3 of Left t3 => Left (Node3 t1 k1 t2 k2 t3) Right _ => Left (Node2 t1 k1 t2) _ => case deleteT23 compare _ key t2 of Left t2 => Left (Node3 t1 k1 t2 k2 t3) Right _ => Left (Node2 t1 k1 t3) _ => case deleteT23 compare _ key t1 of Left t1 => Left (Node3 t1 k1 t2 k2 t3) Right MkUnit => Left (Node2 t2 k2 t3) deleteT23 compare (S (S h)) key (Node2 t1 k1 t2) = case compare key k1 of GT => case deleteT23 compare _ key t2 of Left t2 => Left (Node2 t1 k1 t2) Right t2 => case t1 of Node2 a b c => Right (Node3 a b c k1 t2) Node3 a b c d e => Left (Node4 a b c d e k1 t2) _ => case deleteT23 compare (S h) key t1 of Left t1 => Left (Node2 t1 k1 t2) Right t1 => case t2 of Node2 t2' k2' t3' => Right (Node3 t1 k1 t2' k2' t3') Node3 t2 k2 t3 k3 t4 => Left $ Node4 t1 k1 t2 k2 t3 k3 t4 deleteT23 compare (S (S h)) key (Node3 t1 k1 t2 k2 t3) = case compare key k1 of GT => case compare key k2 of GT => case deleteT23 compare _ key t3 of Left t3 => Left (Node3 t1 k1 t2 k2 t3) Right t3 => Left (merge3 t1 k1 t2 k2 t3) _ => case deleteT23 compare _ key t2 of Left t2 => Left (Node3 t1 k1 t2 k2 t3) Right t2 => Left (merge2 t1 k1 t2 k2 t3) _ => case deleteT23 compare _ key t1 of Left t1 => Left (Node3 t1 k1 t2 k2 t3) Right t1 => Left (merge1 t1 k1 t2 k2 t3) treeLeft : ∀ h k v. T23 h k v → (k × v) treeLeft (Leaf k v) = (k, v) treeLeft (Node2 t1 _ _) = treeLeft t1 treeLeft (Node3 t1 _ _ _ _) = treeLeft t1 treeRight : ∀ h k v. T23 h k v → (k × v) treeRight (Leaf k v) = (k, v) treeRight (Node2 _ _ t2) = treeRight t2 treeRight (Node3 _ _ _ _ t3) = treeRight t3 data SortedMap : U -> U -> U where EmptyMap : ∀ k v. (k → k → Ordering) → SortedMap k v -- h not erased so we know what happens in delete MapOf : ∀ k v. {h : Nat} → (k → k → Ordering) → T23 h k v → SortedMap k v deleteMap : ∀ k v. k → SortedMap k v → SortedMap k v deleteMap key m@(EmptyMap _) = m -- REVIEW if I split h separately in a nested case, it doesn't sort out Hole deleteMap key (MapOf {k} {v} {Z} compare tree) = case deleteT23 compare Z key tree of Left t => MapOf compare t Right t => EmptyMap compare deleteMap key (MapOf {k} {v} {S n} compare tree) = case deleteT23 compare (S n) key tree of Left t => MapOf compare t Right t => MapOf compare t leftMost : ∀ k v. SortedMap k v → Maybe (k × v) leftMost (MapOf compare m) = Just (treeLeft m) leftMost _ = Nothing rightMost : ∀ k v. SortedMap k v → Maybe (k × v) rightMost (MapOf compare m) = Just (treeRight m) rightMost _ = Nothing -- TODO issue with metas and case if written as `do` block pop : ∀ k v. SortedMap k v → Maybe ((k × v) × SortedMap k v) pop m = case leftMost m of Just (k,v) => Just ((k,v), deleteMap k m) Nothing => Nothing lookupMap : ∀ k v. k -> SortedMap k v -> Maybe (k × v) lookupMap k (MapOf compare map) = lookupT23 compare k map lookupMap k _ = Nothing lookupMap' : ∀ k v. k -> SortedMap k v -> Maybe v lookupMap' k (MapOf compare map) = snd <$> lookupT23 compare k map lookupMap' k _ = Nothing updateMap : ∀ k v. k -> v -> SortedMap k v -> SortedMap k v updateMap k v (EmptyMap compare) = MapOf compare $ Leaf k v updateMap k v (MapOf compare map) = case insertT23 compare k v map of Left map' => MapOf compare map' Right (a, b, c) => MapOf compare (Node2 a b c) toList : ∀ k v. SortedMap k v → List (k × v) toList {k} {v} (MapOf compare smap) = reverse $ go smap Nil where go : ∀ h. T23 h k v → List (k × v) → List (k × v) go (Leaf k v) acc = (k, v) :: acc go (Node2 t1 k1 t2) acc = go t2 (go t1 acc) go (Node3 t1 k1 t2 k2 t3) acc = go t3 $ go t2 $ go t1 acc toList _ = Nil emptyMap : ∀ k v. {{Ord k}} → SortedMap k v emptyMap = EmptyMap compare mapFromList : ∀ k v. {{Ord k}} → List (k × v) → SortedMap k v mapFromList {k} {v} stuff = foldl go emptyMap stuff where go : SortedMap k v → k × v → SortedMap k v go map (k, v) = updateMap k v map foldMap : ∀ a b. (b → b → b) → SortedMap a b → List (a × b) → SortedMap a b foldMap f m Nil = m foldMap f m ((a,b) :: xs) = case lookupMap a m of Nothing => foldMap f (updateMap a b m) xs Just (_, b') => foldMap f (updateMap a (f b' b) m) xs listValues : ∀ k v. SortedMap k v → List v listValues sm = map snd $ toList sm