module Prelude id : ∀ a. a → a id x = x data Bool : U where True False : Bool not : Bool → Bool not True = False not False = True -- In Idris, this is lazy in the second arg, we're not doing -- magic laziness for now, it's messy infixr 4 _||_ _||_ : Bool → Bool → Bool True || _ = True False || b = b infixr 5 _&&_ _&&_ : Bool → Bool → Bool False && b = False True && b = b infixl 6 _==_ class Eq a where _==_ : a → a → Bool infixl 6 _/=_ _/=_ : ∀ a. {{Eq a}} → a → a → Bool a /= b = not (a == b) data Nat : U where Z : Nat S : Nat -> Nat pred : Nat → Nat pred Z = Z pred (S k) = k instance Eq Nat where Z == Z = True S n == S m = n == m x == y = False data Maybe : U -> U where Just : ∀ a. a -> Maybe a Nothing : ∀ a. Maybe a fromMaybe : ∀ a. a → Maybe a → a fromMaybe a Nothing = a fromMaybe _ (Just a) = a data Either : U -> U -> U where Left : {0 a b : U} -> a -> Either a b Right : {0 a b : U} -> b -> Either a b infixr 7 _::_ data List : U -> U where Nil : ∀ A. List A _::_ : ∀ A. A → List A → List A length : ∀ a. List a → Nat length Nil = Z length (x :: xs) = S (length xs) infixl 7 _:<_ data SnocList : U → U where Lin : ∀ A. SnocList A _:<_ : ∀ A. SnocList A → A → SnocList A -- 'chips' infixr 6 _<>>_ _<>>_ : ∀ a. SnocList a → List a → List a Lin <>> ys = ys (xs :< x) <>> ys = xs <>> x :: ys -- This is now handled by the parser, and LHS becomes `f a`. -- infixr 0 _$_ -- _$_ : ∀ a b. (a -> b) -> a -> b -- f $ a = f a infixr 8 _×_ infixr 2 _,_ data _×_ : U → U → U where _,_ : ∀ A B. A → B → A × B fst : ∀ a b. a × b → a fst (a,b) = a snd : ∀ a b. a × b → b snd (a,b) = b infixl 6 _<_ _<=_ class Ord a where _<_ : a → a → Bool instance Ord Nat where _ < Z = False Z < S _ = True S n < S m = n < m _<=_ : ∀ a. {{Eq a}} {{Ord a}} → a → a → Bool a <= b = a == b || a < b -- Monad class Monad (m : U → U) where bind : {0 a b} → m a → (a → m b) → m b pure : {0 a} → a → m a infixl 1 _>>=_ _>>_ _>>=_ : {0 m} {{Monad m}} {0 a b} -> (m a) -> (a -> m b) -> m b ma >>= amb = bind ma amb _>>_ : {0 m} {{Monad m}} {0 a b} -> m a -> m b -> m b ma >> mb = mb join : ∀ m. {{Monad m}} {0 a} → m (m a) → m a join mma = mma >>= id -- Equality infixl 1 _≡_ data _≡_ : {A : U} -> A -> A -> U where Refl : {A : U} -> {a : A} -> a ≡ a replace : {A : U} {a b : A} -> (P : A -> U) -> a ≡ b -> P a -> P b replace p Refl x = x cong : {A B : U} {a b : A} -> (f : A -> B) -> a ≡ b -> f a ≡ f b sym : {A : U} -> {a b : A} -> a ≡ b -> b ≡ a sym Refl = Refl -- Functor class Functor (m : U → U) where map : {0 a b} → (a → b) → m a → m b infixr 4 _<$>_ _<$>_ : {0 f} {{Functor f}} {0 a b} → (a → b) → f a → f b f <$> ma = map f ma instance Functor Maybe where map f Nothing = Nothing map f (Just a) = Just (f a) instance Functor List where map f Nil = Nil map f (x :: xs) = f x :: map f xs instance Functor SnocList where map f Lin = Lin map f (xs :< x) = map f xs :< f x -- TODO this probably should depend on / entail Functor infixl 3 _<*>_ class Applicative (f : U → U) where -- appIsFunctor : Functor f return : {0 a} → a → f a _<*>_ : {0 a b} -> f (a → b) → f a → f b class Traversable (t : U → U) where traverse : {f : U → U} → {{appf : Applicative f}} → {a : U} → {b : U} → (a → f b) → t a → f (t b) instance Traversable List where traverse f nil = return Nil traverse f (x :: xs) = return _::_ <*> f a <*> traverse f xs for : {t : U → U} {f : U → U} → {{Traversable t}} {{appf : Applicative f}} → {a : U} → {b : U} → t a → (a → f b) → f (t b) for stuff fun = traverse fun stuff instance Applicative Maybe where return a = Just a Nothing <*> _ = Nothing Just f <*> fa = f <$> fa infixr 2 _<|>_ class Alternative (m : U → U) where _<|>_ : {0 a} → m a → m a → m a instance Alternative Maybe where Nothing <|> x = x Just x <|> _ = Just x -- Semigroup infixl 8 _<+>_ class Semigroup a where _<+>_ : a → a → a infixl 7 _+_ class Add a where _+_ : a → a → a infixl 8 _*_ _/_ class Mul a where _*_ : a → a → a class Div a where _/_ : a → a → a instance Add Nat where Z + m = m S n + m = S (n + m) instance Mul Nat where Z * _ = Z S n * m = m + n * m infixl 7 _-_ class Sub a where _-_ : a → a → a instance Sub Nat where Z - m = Z n - Z = n S n - S m = n - m infixr 7 _++_ class Concat a where _++_ : a → a → a ptype String ptype Int ptype Char pfunc sconcat : String → String → String := `(x,y) => x + y` instance Concat String where _++_ = sconcat pfunc jsEq uses (True False) : ∀ a. a → a → Bool := `(_, a, b) => a == b ? True : False` instance Eq Int where a == b = jsEq a b instance Eq String where a == b = jsEq a b instance Eq Char where a == b = jsEq a b data Unit : U where MkUnit : Unit ptype Array : U → U pfunc listToArray : {a : U} -> List a -> Array a := ` (a, l) => { let rval = [] while (l.tag !== 'Nil') { rval.push(l.h1) l = l.h2 } return rval } ` pfunc alen : {0 a : U} -> Array a -> Int := `(a,arr) => arr.length` pfunc aget : {0 a : U} -> Array a -> Int -> a := `(a, arr, ix) => arr[ix]` pfunc aempty : {0 a : U} -> Unit -> Array a := `() => []` pfunc arrayToList uses (Nil _::_) : {0 a} → Array a → List a := `(a,arr) => { let rval = Nil(a) for (let i = arr.length - 1;i >= 0; i--) { rval = _$3A$3A_(a, arr[i], rval) } return rval }` -- for now I'll run this in JS pfunc lines : String → List String := `(s) => arrayToList(s.split('\n'))` pfunc p_strHead : (s : String) -> Char := `(s) => s[0]` pfunc p_strTail : (s : String) -> String := `(s) => s[0]` pfunc trim : String -> String := `s => s.trim()` pfunc split uses (Nil _::_) : String -> String -> List String := `(s, by) => { let parts = s.split(by) let rval = Nil(String) parts.reverse() parts.forEach(p => { rval = _$3A$3A_(undefined, p, rval) }) return rval }` pfunc slen : String -> Int := `s => s.length` pfunc sindex : String -> Int -> Char := `(s,i) => s[i]` -- TODO represent Nat as number at runtime pfunc natToInt : Nat -> Int := `(n) => { let rval = 0 while (n.tag === 'S') { n = n.h0 rval++ } return rval }` pfunc fastConcat : List String → String := `(xs) => listToArray(undefined, xs).join('')` pfunc replicate : Nat -> Char → String := `(n,c) => c.repeat(natToInt(n))` -- I don't want to use an empty type because it would be a proof of void ptype World data IORes : U -> U where MkIORes : {a : U} -> a -> World -> IORes a IO : U -> U IO a = World -> IORes a instance Monad IO where bind ma mab = \ w => case ma w of MkIORes a w => mab a w pure a = \ w => MkIORes a w bindList : ∀ a b. List a → (a → List b) → List b instance ∀ a. Concat (List a) where Nil ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) instance Monad List where pure a = a :: Nil bind Nil amb = Nil bind (x :: xs) amb = amb x ++ bind xs amb -- This is traverse, but we haven't defined Traversable yet mapA : ∀ m. {{Applicative m}} {0 a b} → (a → m b) → List a → m (List b) mapA f Nil = return Nil mapA f (x :: xs) = return _::_ <*> f x <*> mapA f xs mapM : ∀ m. {{Monad m}} {0 a b} → (a → m b) → List a → m (List b) mapM f Nil = pure Nil mapM f (x :: xs) = do b <- f x bs <- mapM f xs pure (b :: bs) class HasIO (m : U -> U) where liftIO : ∀ a. IO a → m a instance HasIO IO where liftIO a = a pfunc debugLog uses (MkIORes MkUnit) : ∀ a. a -> IO Unit := `(_,s) => (w) => { console.log(s) return MkIORes(undefined,MkUnit,w) }` pfunc primPutStrLn uses (MkIORes MkUnit) : String -> IO Unit := `(s) => (w) => { console.log(s) return MkIORes(undefined,MkUnit,w) }` putStrLn : ∀ io. {{HasIO io}} -> String -> io Unit putStrLn s = liftIO (primPutStrLn s) pfunc showInt : Int -> String := `(i) => String(i)` class Show a where show : a → String instance Show String where show a = a instance Show Int where show = showInt pfunc ord : Char -> Int := `(c) => c.charCodeAt(0)` pfunc unpack : String -> List Char := `(s) => { let acc = Nil(Char) for (let i = s.length - 1; 0 <= i; i--) acc = _$3A$3A_(Char, s[i], acc) return acc }` pfunc pack : List Char → String := `(cs) => { let rval = '' while (cs.tag === '_::_') { rval += cs.h1 cs = cs.h2 } return rval } ` pfunc debugStr uses (natToInt listToArray) : ∀ a. a → String := `(_, obj) => { const go = (obj) => { if (obj?.tag === '_::_' || obj?.tag === 'Nil') { let stuff = listToArray(undefined,obj) return '['+(stuff.map(go).join(', '))+']' } if (obj?.tag === 'S' || obj?.tag === 'Z') { return ''+natToInt(obj) } else if (obj?.tag) { let rval = '('+obj.tag for(let i=0;;i++) { let key = 'h'+i if (!(key in obj)) break rval += ' ' + go(obj[key]) } return rval+')' } else { return JSON.stringify(obj) } } return go(obj) }` pfunc stringToInt : String → Int := `(s) => { let rval = Number(s) if (isNaN(rval)) throw new Error(s + " is NaN") return rval }` foldl : ∀ A B. (B -> A -> B) -> B -> List A -> B foldl f acc Nil = acc foldl f acc (x :: xs) = foldl f (f acc x) xs infixl 9 _∘_ _∘_ : {A B C : U} -> (B -> C) -> (A -> B) -> A -> C (f ∘ g) x = f (g x) pfunc addInt : Int → Int → Int := `(x,y) => x + y` pfunc mulInt : Int → Int → Int := `(x,y) => x * y` pfunc subInt : Int → Int → Int := `(x,y) => x - y` pfunc ltInt uses (True False) : Int → Int → Bool := `(x,y) => x < y ? True : False` instance Mul Int where x * y = mulInt x y instance Add Int where x + y = addInt x y instance Sub Int where x - y = subInt x y instance Ord Int where x < y = ltInt x y printLn : {m} {{HasIO m}} {a} {{Show a}} → a → m Unit printLn a = putStrLn (show a) -- opaque JSObject ptype JSObject reverse : ∀ a. List a → List a reverse {a} = go Nil where go : List a → List a → List a go acc Nil = acc go acc (x :: xs) = go (x :: acc) xs -- Like Idris1, but not idris2, we need {a} to put a in scope. span : ∀ a. (a -> Bool) -> List a -> List a × List a span {a} f xs = go xs Nil where go : List a -> List a -> List a × List a go Nil left = (reverse left, Nil) go (x :: xs) left = if f x then go xs (x :: left) else (reverse left, x :: xs) instance Show Nat where show n = show (natToInt n) enumerate : ∀ a. List a → List (Nat × a) enumerate {a} xs = go Z xs where go : Nat → List a → List (Nat × a) go k Nil = Nil go k (x :: xs) = (k,x) :: go (S k) xs filter : ∀ a. (a → Bool) → List a → List a filter pred Nil = Nil filter pred (x :: xs) = if pred x then x :: filter pred xs else filter pred xs drop : ∀ a. Nat -> List a -> List a drop _ Nil = Nil drop Z xs = xs drop (S k) (x :: xs) = drop k xs take : ∀ a. Nat -> List a -> List a take Z xs = Nil take _ Nil = Nil take (S k) (x :: xs) = x :: take k xs getAt : ∀ a. Nat → List a → Maybe a getAt _ Nil = Nothing getAt Z (x :: xs) = Just x getAt (S k) (x :: xs) = getAt k xs splitOn : ∀ a. {{Eq a}} → a → List a → List (List a) splitOn {a} v xs = go Nil xs where go : List a → List a → List (List a) go acc Nil = reverse acc :: Nil go acc (x :: xs) = if x == v then reverse acc :: go Nil xs else go (x :: acc) xs class Inhabited a where default : a instance ∀ a. Inhabited (List a) where default = Nil getAt! : ∀ a. {{Inhabited a}} → Nat → List a → a getAt! _ Nil = default getAt! Z (x :: xs) = x getAt! (S k) (x :: xs) = getAt! k xs instance ∀ a. Applicative (Either a) where return b = Right b Right x <*> Right y = Right (x y) Left x <*> _ = Left x Right x <*> Left y = Left y instance ∀ a. Monad (Either a) where pure x = Right x bind (Right x) mab = mab x bind (Left x) mab = Left x instance Monad Maybe where pure x = Just x bind Nothing mab = Nothing bind (Just x) mab = mab x elem : ∀ a. {{Eq a}} → a → List a → Bool elem v Nil = False elem v (x :: xs) = if v == x then True else elem v xs -- TODO no empty value on my `Add`, I need a group.. -- sum : ∀ a. {{Add a}} → List a → a -- sum xs = foldl _+_ pfunc trace uses (debugStr) : ∀ a. String -> a -> a := `(_, msg, a) => { console.log(msg,debugStr(_,a)); return a }` mapMaybe : ∀ a b. (a → Maybe b) → List a → List b mapMaybe f Nil = Nil mapMaybe f (x :: xs) = case f x of Just y => y :: mapMaybe f xs Nothing => mapMaybe f xs zip : ∀ a b. List a → List b → List (a × b) zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys zip _ _ = Nil -- TODO add double literals ptype Double pfunc intToDouble : Int → Double := `(x) => x` pfunc doubleToInt : Double → Int := `(x) => x` pfunc addDouble : Double → Double → Double := `(x,y) => x + y` pfunc subDouble : Double → Double → Double := `(x,y) => x - y` pfunc mulDouble : Double → Double → Double := `(x,y) => x * y` pfunc divDouble : Double → Double → Double := `(x,y) => x / y` pfunc sqrtDouble : Double → Double := `(x) => Math.sqrt(x)` pfunc ceilDouble : Double → Double := `(x) => Math.ceil(x)` instance Add Double where x + y = addDouble x y instance Sub Double where x - y = subDouble x y instance Mul Double where x * y = mulDouble x y instance Div Double where x / y = divDouble x y ptype IOArray : U → U pfunc newArray uses (MkIORes) : ∀ a. Int → a → IO (IOArray a) := `(_, n, v) => (w) => MkIORes(undefined,Array(n).fill(v),w)` pfunc arrayGet : ∀ a. IOArray a → Int → IO a := `(_, arr, ix) => w => MkIORes(undefined, arr[ix], w)` pfunc arraySet uses (MkUnit) : ∀ a. IOArray a → Int → a → IO Unit := `(_, arr, ix, v) => w => { arr[ix] = v return MkIORes(undefined, MkUnit, w) }` class Cast a b where cast : a → b instance Cast Nat Int where cast = natToInt instance Cast Int Double where cast = intToDouble instance Applicative IO where return a = \ w => MkIORes a w f <*> a = \ w => let (MkIORes f w) = trace "fw" $ f w in let (MkIORes a w) = trace "aw" $ a w in MkIORes (f a) w