-- I'm not sure this is related, or just a note to self (Presheaves on Porpoise) -- maybe watch https://www.youtube.com/watch?v=3gef0_NFz8Q -- or drop the indices for now. module Lib.TT -- For SourcePos import Lib.Parser.Impl import Lib.Prettier import Control.Monad.Error.Interface import Data.IORef import Data.Fin import Data.List import Data.Vect import Data.SortedMap public export Name : Type Name = String public export data Icit = Implicit | Explicit %name Icit icit public export data BD = Bound | Defined public export data Tm : Type where Bnd : Nat -> Tm -- Maybe Def here instead of Maybe Tm, we'll have DCon, TCon, etc. Ref : String -> Maybe Tm -> Tm Meta : Nat -> Tm -- kovacs optimization, I think we can App out meta instead -- InsMeta : Nat -> List BD -> Tm Lam : Name -> Icit -> Tm -> Tm App : Tm -> Tm -> Tm U : Tm Pi : Name -> Icit -> Tm -> Tm -> Tm Let : Name -> Icit -> Tm -> Tm -> Tm -> Tm %name Tm t, u, v public export Show Tm where show (Bnd k) = "(Bnd \{show k})" show (Ref str _) = "(Ref \{show str})" show (Lam nm Implicit t) = "(λ {\{nm}} => \{show t})" show (Lam nm Explicit t) = "(λ \{nm} => \{show t})" show (App t u) = "(\{show t} \{show u})" show (Meta i) = "(Meta \{show i})" show U = "U" show (Pi str icit t u) = "(∏ \{str} : \{show t} => \{show u})" show (Let str icit t u v) = "let \{str} : \{show t} = \{show u} in \{show v}" -- I can't really show val because it's HOAS... -- TODO derive export Eq Icit where Implicit == Implicit = True Explicit == Explicit = True _ == _ = False ||| Eq on Tm. We've got deBruijn indices, so I'm not comparing names export Eq (Tm) where -- (Local x) == (Local y) = x == y (Bnd x) == (Bnd y) = x == y (Ref x _) == (Ref y _) = x == y (Lam n icit t) == (Lam n' icit' t') = icit == icit' && t == t' (App t u) == App t' u' = t == t' && u == u' U == U = True (Pi n icit t u) == (Pi n' icit' t' u') = icit == icit' && t == t' && u == u' (Let n icit t u v) == (Let n' icit' t' u' v') = t == t' && u == u' && v == v' _ == _ = False public export Pretty Tm where pretty (Bnd k) = ?rhs_0 pretty (Ref str mt) = text str pretty (Meta k) = text "?m\{show k}" pretty (Lam str Implicit t) = text "(\\ {\{str}} => " <+> pretty t <+> ")" pretty (Lam str Explicit t) = text "(\\ \{str} => " <+> pretty t <+> ")" pretty (App t u) = text "(" <+> pretty t <+> pretty u <+> ")" pretty U = "U" pretty (Pi str icit t u) = text "(" <+> text str <+> ":" <+> pretty t <+> "=>" <+> pretty u <+> ")" pretty (Let str icit t u v) = text "let" <+> text str <+> ":" <+> pretty t <+> "=" <+> pretty u -- public export -- data Closure : Nat -> Type data Val : Type -- IS/TypeTheory.idr is calling this a Kripke function space -- Yaffle, IS/TypeTheory use a function here. -- Kovacs, Idris use Env and Tm -- in cctt kovacs refers to this choice as defunctionalization vs HOAS -- https://github.com/AndrasKovacs/cctt/blob/main/README.md#defunctionalization -- the tradeoff is access to internals of the function -- Yaffle is vars -> vars here public export data Closure : Type public export data Val : Type where -- This will be local / flex with spine. VVar : (k : Nat) -> (sp : List Val) -> Val -- I wanted the Maybe Tm in here, but for now we're always expanding. -- Maybe this is where I glue VRef : (nm : String) -> (sp : List Val) -> Val -- we'll need to look this up in ctx with IO VMeta : (ix : Nat) -> (sp : List Val) -> Val VLam : Name -> Icit -> Closure -> Val VPi : Name -> Icit -> Lazy Val -> Closure -> Val VU : Val public export Env : Type Env = List Val public export data Mode = CBN | CBV export eval : Env -> Mode -> Tm -> Val data Closure = MkClosure Env Tm public export ($$) : {auto mode : Mode} -> Closure -> Val -> Val ($$) (MkClosure env tm) u = eval (u :: env) mode tm public export infixl 8 $$ export vapp : Val -> Val -> Val vapp (VLam _ icit t) u = t $$ u vapp (VVar k sp) u = VVar k (u :: sp) vapp (VRef nm sp) u = VRef nm (u :: sp) vapp (VMeta k sp) u = VMeta k (u :: sp) vapp _ _ = ?throw_impossible bind : Val -> Env -> Env bind v env = v :: env -- Do we want a def in here instead? We'll need DCon/TCon eventually -- I need to be aggressive about reduction, I guess. I'll figure it out -- later, maybe need lazy glued values. eval env mode (Ref x (Just tm)) = eval env mode tm eval env mode (Ref x Nothing) = VRef x [] eval env mode (App (Ref x (Just tm)) u) = vapp (eval env mode tm) (eval env mode u) eval env mode (App t u) = vapp (eval env mode t) (eval env mode u) eval env mode U = VU eval env mode (Meta i) = VMeta i [] eval env mode (Lam x icit t) = VLam x icit (MkClosure env t) eval env mode (Pi x icit a b) = VPi x icit (eval env mode a) (MkClosure env b) eval env mode (Let x icit ty t u) = eval (eval env mode t :: env) mode u eval env mode (Bnd i) = let Just rval = getAt i env | _ => ?out_of_index in rval export quote : (lvl : Nat) -> Val -> Tm quoteSp : (lvl : Nat) -> Tm -> List Val -> Tm quoteSp lvl t [] = t quoteSp lvl t (x :: xs) = quoteSp lvl (App t (quote lvl x)) xs quote l (VVar k sp) = quoteSp l (Bnd ((l `minus` k) `minus` 1)) sp -- level to index quote l (VMeta i sp) = quoteSp l (Meta i) sp quote l (VLam x icit t) = Lam x icit (quote (S l) (t $$ VVar l [])) quote l (VPi x icit a b) = Pi x icit (quote l a) (quote (S l) (b $$ VVar l [])) quote l VU = U quote l (VRef n sp) = quoteSp l (Ref n Nothing) sp -- Can we assume closed terms? -- ezoo only seems to use it at [], but essentially does this: export nf : Env -> Tm -> Tm nf env t = quote (length env) (eval env CBN t) {- smalltt smalltt gets into weird haskell weeds in eval - shifting top level to the left and tagging meta vs top with a bit. I think something subtle is going on with laziness on Elaboration.hs:300 yeah, and define is even inlined. So it has a top context, and clears out almost everything for processing a def in a different kind of context. we very much need an idea of local context for metas. I don't want to abstract over the entire program. So I guess we have top and local then? With haskell syntax. I think we can have Axiom for claims and rewrite to def later. Hmm, so given ezoo, if I'm going simple, I could keep BDs short, and use the normal context. (Zoo4.lean:222) I'd probably still need an undefined/axiom marker as a value? ok, so with just one context, Env is List Val and we're getting Tm back from type checking. Can I get val back? Do we need to quote? What happens if we don't? -} -- FIXME remove List BD public export data MetaEntry = Unsolved Nat (List BD) | Solved Nat Val public export record MetaContext where constructor MC metas : List MetaEntry next : Nat public export data Def = Axiom | TCon (List String) | DCon Nat | Fn Tm Show Def where show Axiom = "axiom" show (TCon strs) = "TCon \{show strs}" show (DCon k) = "DCon \{show k}" show (Fn t) = "Fn \{show t}" ||| entry in the top level context public export record TopEntry where constructor MkEntry name : String type : Tm def : Def -- FIXME snoc export Show TopEntry where show (MkEntry name type def) = "\{name} : \{show type} := \{show def}" ||| Top level context. ||| Most of the reason this is separate is to have a different type ||| `Def` for the entries. ||| ||| The price is that we have names in addition to levels. Do we want to ||| expand these during conversion? public export record TopContext where constructor MkTop -- We'll add a map later? defs : List TopEntry metas : IORef MetaContext -- metas : TODO -- we'll use this for typechecking, but need to keep a TopContext around too. public export record Context where constructor MkCtx lvl : Nat -- shall we use lvl as an index? env : Env -- Values in scope types : Vect lvl (String, Val) -- types and names in scope -- so we'll try "bds" determines length of local context bds : List BD -- bound or defined pos : SourcePos -- the last SourcePos that we saw -- We only need this here if we don't pass TopContext -- top : TopContext metas : IORef MetaContext export freshMeta : HasIO m => Context -> m Tm freshMeta ctx = do mc <- readIORef ctx.metas writeIORef ctx.metas $ { next $= S, metas $= (Unsolved mc.next ctx.bds ::) } mc pure $ applyBDs 0 (Meta mc.next) ctx.bds where -- hope I got the right order here :) applyBDs : Nat -> Tm -> List BD -> Tm applyBDs k t [] = t applyBDs k t (Bound :: xs) = applyBDs (S k) (App t (Bnd k)) xs applyBDs k t (Defined :: xs) = applyBDs (S k) t xs -- solveMeta : HasIO m => Context -> m Tm -- solveMeta ctx = do -- mc <- readIORef ctx.metas -- we need more of topcontext later - Maybe switch it up so we're not passing -- around top export mkCtx : IORef MetaContext -> Context mkCtx metas = MkCtx 0 [] [] [] (0,0) metas export partial Show Context where show ctx = "Context \{show $ map fst $ ctx.types}" -- TODO Pretty Context -- idea cribbed from pi-forall public export data ErrorSeg : Type where DD : Pretty a => a -> ErrorSeg DS : String -> ErrorSeg toDoc : ErrorSeg -> Doc toDoc (DD x) = pretty x toDoc (DS str) = text str export error : {0 m : Type -> Type} -> {auto _ : MonadError Error m} -> {auto ctx : Context} -> List ErrorSeg -> m a error xs = throwError $ E ctx.pos (render 80 $ spread $ map toDoc xs) ||| add a binding to environment export extend : Context -> String -> Val -> Context extend ctx name ty = { lvl $= S, env $= (VVar ctx.lvl [] ::), types $= ((name, ty) ::), bds $= (Bound ::) } ctx -- I guess we define things as values? export define : Context -> String -> Val -> Val -> Context define ctx name val ty = { lvl $= S, env $= (val ::), types $= ((name,ty) ::), bds $= (Defined ::) } ctx -- not used lookup : {0 m : Type -> Type} -> {auto _ : MonadError String m} -> Context -> String -> m Val lookup ctx nm = go ctx.types where go : Vect n (String,Val) -> m Val go [] = throwError "Name \{nm} not in scope" go ((n, ty) :: xs) = if n == nm then pure ty else go xs