module Tree -- adapted from Conor McBride's 2-3 tree example -- youtube video: https://youtu.be/v2yXrOkzt5w?t=3013 data Nat : U where Z : Nat S : Nat -> Nat data Unit : U where MkUnit : Unit data Void : U where infixl 4 _+_ data _+_ : U -> U -> U where inl : {A B} -> A -> A + B inr : {A B} -> B -> A + B infix 4 _<=_ _<=_ : Nat -> Nat -> U Z <= y = Unit S x <= Z = Void S x <= S y = x <= y cmp : (x y : Nat) -> (x <= y) + (y <= x) cmp Z y = inl MkUnit cmp (S z) Z = inr MkUnit cmp (S x) (S y) = cmp x y -- 53:21 data Bnd : U where Bot : Bnd N : Nat -> Bnd Top : Bnd infix 4 _<<=_ _<<=_ : Bnd -> Bnd -> U Bot <<= _ = Unit N x <<= N y = x <= y _ <<= Top = Unit _ <<= _ = Void data Intv : Bnd -> Bnd -> U where intv : {l u} (x : Nat) (lx : l <<= N x) (xu : N x <<= u) -> Intv l u data T23 : Bnd -> Bnd -> Nat -> U where leaf : {l u} (lu : l <<= u) -> T23 l u Z node2 : {l u h} (x : _) (tlx : T23 l (N x) h) (txu : T23 (N x) u h) -> T23 l u (S h) node3 : {l u h} (x y : _) (tlx : T23 l (N x) h) (txy : T23 (N x) (N y) h) (tyu : T23 (N y) u h) -> T23 l u (S h) -- 56: infixl 5 _*_ infixr 1 _,_ data Sg : (A : U) -> (A -> U) -> U where _,_ : {A : U} {B : A -> U} -> (a : A) -> B a -> Sg A B _*_ : U -> U -> U A * B = Sg A (\ _ => B) TooBig : Bnd -> Bnd -> Nat -> U TooBig l u h = Sg Nat (\ x => T23 l (N x) h * T23 (N x) u h) insert : {l u h} -> Intv l u -> T23 l u h -> TooBig l u h + T23 l u h insert (intv x lx xu) (leaf lu) = inl (x , (leaf lx , leaf xu)) insert (intv x lx xu) (node2 y tly tyu) = case cmp x y of -- u := N y is not solved at this time -- The problem looks like -- %v13 <= %v8 =?= N %v13 <<= (?m104 ...) -- This might work if ?m104 is solved another way, so perhaps it could be postponed inl xy => case insert (intv {_} {N y} x lx xy) tly of inl (z , (tlz , tzy)) => inr (node3 z y tlz tzy tyu) inr tly' => inr (node2 y tly' tyu) inr yx => case insert (intv {N y} x yx xu) tyu of inl (z , (tyz , tzu)) => inr (node3 y z tly tyz tzu) inr tyu' => inr (node2 y tly tyu') insert (intv x lx xu) (node3 y z tly tyz tzu) = case cmp x y of inl xy => case insert (intv {_} {N y} x lx xy) tly of inl (v , (tlv , tvy)) => inl (y , (node2 v tlv tvy , node2 z tyz tzu)) inr tly' => inr (node3 y z tly' tyz tzu) inr yx => case cmp x z of inl xz => case insert (intv {N y} {N z} x yx xz) tyz of inl (w , (tyw , twz)) => inl (w , (node2 y tly tyw , node2 z twz tzu)) inr tyz' => inr (node3 y z tly tyz' tzu) inr zx => case insert (intv {N z} x zx xu) tzu of inl (w , (tzw , twu)) => inl (z , (node2 y tly tyz , node2 w tzw twu)) inr tzu' => inr (node3 y z tly tyz tzu')