module Prelude data Bool : U where True False : Bool not : Bool → Bool not True = False not False = True -- In Idris, this is lazy in the second arg, we're not doing -- magic laziness for now, it's messy infixr 4 _||_ _||_ : Bool → Bool → Bool True || _ = True False || b = b infixl 6 _==_ class Eq a where _==_ : a → a → Bool data Nat : U where Z : Nat S : Nat -> Nat instance Eq Nat where Z == Z = True S n == S m = n == m x == y = False data Maybe : U -> U where Just : {a : U} -> a -> Maybe a Nothing : {a : U} -> Maybe a fromMaybe : {a} → a → Maybe a → a fromMaybe a Nothing = a fromMaybe _ (Just a) = a data Either : U -> U -> U where Left : {a b : U} -> a -> Either a b Right : {a b : U} -> b -> Either a b infixr 7 _::_ data List : U -> U where Nil : {A} → List A _::_ : {A} → A → List A → List A infixl 7 _:<_ data SnocList : U → U where Lin : {A} → SnocList A _:<_ : {A} → SnocList A → A → SnocList A -- 'chips' infixr 6 _<>>_ _<>>_ : {a} → SnocList a → List a → List a Lin <>> ys = ys (xs :< x) <>> ys = xs <>> x :: ys -- TODO this is special cased in some languages, maybe for easier -- inference? Figure out why. -- Currently very noisy in generated code (if nothing else, optimize it out?) infixr 0 _$_ _$_ : {a b : U} -> (a -> b) -> a -> b f $ a = f a infixr 8 _×_ infixr 2 _,_ data _×_ : U → U → U where _,_ : {A B} → A → B → A × B infixl 6 _<_ class Ord a where _<_ : a → a → Bool instance Ord Nat where _ < Z = False Z < S _ = True S n < S m = n < m -- Monad class Monad (m : U → U) where bind : {a b} → m a → (a → m b) → m b pure : {a} → a → m a infixl 1 _>>=_ _>>_ _>>=_ : {m} {{Monad m}} {a b} -> (m a) -> (a -> m b) -> m b ma >>= amb = bind ma amb _>>_ : {m} {{Monad m}} {a b} -> m a -> m b -> m b ma >> mb = mb -- Equality infixl 1 _≡_ data _≡_ : {A : U} -> A -> A -> U where Refl : {A : U} -> {a : A} -> a ≡ a replace : {A : U} {a b : A} -> (P : A -> U) -> a ≡ b -> P a -> P b replace p Refl x = x cong : {A B : U} {a b : A} -> (f : A -> B) -> a ≡ b -> f a ≡ f b sym : {A : U} -> {a b : A} -> a ≡ b -> b ≡ a sym Refl = Refl -- Functor class Functor (m : U → U) where map : {a b} → (a → b) → m a → m b infixr 4 _<$>_ _<$>_ : {f} {{Functor f}} {a b} → (a → b) → f a → f b f <$> ma = map f ma instance Functor Maybe where map f Nothing = Nothing map f (Just a) = Just (f a) -- TODO this probably should depend on / entail Functor infixl 3 _<*>_ class Applicative (f : U → U) where -- appIsFunctor : Functor f return : {a} → a → f a _<*>_ : {a b} -> f (a → b) → f a → f b infixr 2 _<|>_ class Alternative (m : U → U) where _<|>_ : {a} → m a → m a → m a instance Alternative Maybe where Nothing <|> x = x Just x <|> _ = Just x -- Semigroup infixl 8 _<+>_ class Semigroup a where _<+>_ : a → a → a infixl 7 _+_ class Add a where _+_ : a → a → a infixl 8 _*_ class Mul a where _*_ : a → a → a instance Add Nat where Z + m = m S n + m = S (n + m) instance Mul Nat where Z * _ = Z S n * m = m + n * m infixl 7 _-_ class Sub a where _-_ : a → a → a instance Sub Nat where Z - m = Z n - Z = n S n - S m = n - m infixr 7 _++_ class Concat a where _++_ : a → a → a ptype String ptype Int ptype Char -- probably want to switch to Int or implement magic Nat pfunc length : String → Nat := "(s) => { let rval = Z for (let i = 0; i < s.length; s++) rval = S(rval) return rval }" pfunc sconcat : String → String → String := "(x,y) => x + y" instance Concat String where _++_ = sconcat data Unit : U where MkUnit : Unit ptype Array : U → U pfunc listToArray : {a : U} -> List a -> Array a := " (a, l) => { let rval = [] while (l.tag !== 'Nil') { rval.push(l.h1) l = l.h2 } return rval } " pfunc alen : {a : U} -> Array a -> Int := "(a,arr) => arr.length" pfunc aget : {a : U} -> Array a -> Int -> a := "(a, arr, ix) => arr[ix]" pfunc aempty : {a : U} -> Unit -> Array a := "() => []" pfunc arrayToList : {a} → Array a → List a := "(a,arr) => { let rval = Nil(a) for (let i = arr.length - 1;i >= 0; i--) { rval = Cons(a, arr[i], rval) } return rval }" -- for now I'll run this in JS pfunc lines : String → List String := "(s) => arrayToList(s.split('\n'))" -- TODO represent Nat as number at runtime pfunc natToInt : Nat -> Int := "(n) => { let rval = 0 while (n.tag === 'S') { n = n.h0 rval++ } return rval }" pfunc fastConcat : List String → String := "(xs) => listToArray(undefined, xs).join('')" pfunc replicate : Nat -> Char → String := "(n,c) => c.repeat(natToInt(n))" -- I don't want to use an empty type because it would be a proof of void ptype World data IORes : U -> U where MkIORes : {a : U} -> a -> World -> IORes a IO : U -> U IO a = World -> IORes a instance Monad IO where bind ma mab = \ w => case ma w of MkIORes a w => mab a w pure a = \ w => MkIORes a w pfunc putStrLn : String -> IO Unit := "(s) => (w) => { console.log(s) return MkIORes(Unit,MkUnit,w) }" class Show a where show : a → String instance Show String where show a = a