module DSL -- https://www.youtube.com/watch?v=sFyy9sssK50 data ℕ : U where Z : ℕ S : ℕ → ℕ infixl 7 _+_ infixl 8 _*_ _+_ : ℕ → ℕ → ℕ Z + m = m (S k) + m = S (k + m) _*_ : ℕ → ℕ → ℕ Z * m = Z (S k) * m = m + k * m infixr 4 _::_ data Vec : U → ℕ → U where Nil : {a} → Vec a Z _::_ : {a k} → a → Vec a k → Vec a (S k) infixl 5 _++_ _++_ : {a n m} → Vec a n → Vec a m → Vec a (n + m) Nil ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) map : {a b n} → (a → b) → Vec a n → Vec b n map f Nil = Nil map f (x :: xs) = f x :: map f xs data E : U where Zero : E One : E Add : E → E → E Mul : E → E → E two : E two = Add One One four : E four = Mul two two card : E → ℕ card Zero = Z card One = S Z card (Add x y) = card x + card y card (Mul x y) = card x * card y data Empty : U where data Unit : U where -- unit accepted but case building thinks its a var unit : Unit data Either : U -> U -> U where Left : {A B} → A → Either A B Right : {A B} → B → Either A B infixr 4 _,_ data Both : U → U → U where _,_ : {A B} → A → B → Both A B typ : E → U typ Zero = Empty typ One = Unit typ (Add x y) = Either (typ x) (typ y) typ (Mul x y) = Both (typ x) (typ y) Bool : U Bool = typ two false : Bool false = Left unit true : Bool true = Right unit BothBoolBool : U BothBoolBool = typ four ex1 : BothBoolBool ex1 = (false, true) enumAdd : {a b m n} → Vec a m → Vec b n → Vec (Either a b) (m + n) enumAdd xs ys = map Left xs ++ map Right ys -- for this I followed the shape of _*_, the lecture was slightly different enumMul : {a b m n} → Vec a m → Vec b n → Vec (Both a b) (m * n) enumMul Nil ys = Nil enumMul (x :: xs) ys = map (_,_ x) ys ++ enumMul xs ys enumerate : (t : E) → Vec (typ t) (card t) enumerate Zero = Nil enumerate One = unit :: Nil enumerate (Add x y) = enumAdd (enumerate x) (enumerate y) enumerate (Mul x y) = enumMul (enumerate x) (enumerate y) test2 : Vec (typ two) (card two) test2 = enumerate two test4 : Vec (typ four) (card four) test4 = enumerate four -- TODO I need to add #eval, like Lean -- #eval enumerate two -- for now, I'll define ≡ to check infixl 2 _≡_ data _≡_ : {A} → A → A → U where Refl : {A} {a : A} → a ≡ a test2' : test2 ≡ false :: true :: Nil test2' = Refl test4' : test4 ≡ (false, false) :: (false, true) :: (true, false) :: (true, true) :: Nil test4' = Refl