module Lib.CompileExp import Prelude import Lib.Common import Lib.Types -- Name / Tm import Lib.TopContext import Lib.Prettier import Lib.Util import Lib.Ref2 import Data.SortedMap -- REVIEW Separate pass for constructor magic? -- ConCase SuccCon will be replaced by Default CLet, -- but we would need to fix up zero, since we collapse extra constructors into a default case. -- But should be ok becaon CLitAlt doesn't bind. CExp : U data CAlt : U where CConAlt : Nat → String → ConInfo → List String → CExp → CAlt -- REVIEW keep var name? CDefAlt : CExp -> CAlt -- literal CLitAlt : Literal -> CExp -> CAlt data CExp : U where CBnd : Int -> CExp -- How is CLam different from CFun with one arg? CLam : Name -> CExp -> CExp CFun : List Name -> CExp -> CExp CAppRef : QName -> List CExp -> Int -> CExp CApp : CExp -> CExp -> CExp CCase : CExp -> List CAlt -> CExp CRef : QName -> CExp CMeta : Int -> CExp CLit : Literal -> CExp CLet : Name -> CExp -> CExp -> CExp CLetRec : Name -> CExp -> CExp -> CExp CErased : CExp -- Data / type constructor CConstr : Nat → Name -> List CExp -> CExp -- Raw javascript for `pfunc` CRaw : String -> List QName -> CExp -- Need this for magic Nat -- TODO - use for primitives too CPrimOp : String → CExp → CExp -> CExp -- I'm counting Lam in the term for arity. This matches what I need in -- code gen. lamArity : Tm -> Nat lamArity (Lam _ _ _ _ t) = S (lamArity t) lamArity _ = Z compilePrimOp : String → List CExp → Maybe CExp compilePrimOp "Prelude.addString" (x :: y :: Nil) = Just (CPrimOp "+" x y) compilePrimOp "Prelude.addInt" (x :: y :: Nil) = Just (CPrimOp "+" x y) compilePrimOp "Prelude.mulInt" (x :: y :: Nil) = Just (CPrimOp "*" x y) compilePrimOp "Prelude.subInt" (x :: y :: Nil) = Just (CPrimOp "-" x y) compilePrimOp "Prelude.divInt" (x :: y :: Nil) = Just (CPrimOp "|" (CPrimOp "/" x y) (CLit $ LInt 0)) compilePrimOp _ _ = Nothing -- This is how much we want to curry at top level -- leading lambda Arity is used for function defs and metas -- TODO - figure out how this will work with erasure arityForName : {{Ref2 Defs St}} → FC -> QName -> M Nat arityForName fc nm = do defs <- getRef Defs case lookupMap' nm defs of Nothing => error fc "Name \{show nm} not in scope" (Just Axiom) => pure Z (Just (TCon arity strs)) => pure $ cast arity (Just (DCon _ _ k str)) => pure $ cast k (Just (Fn t)) => pure $ lamArity t (Just (PrimTCon arity)) => pure $ cast arity (Just (PrimFn t arity used)) => pure arity any : ∀ a. (a → Bool) → List a → Bool any f Nil = False any f (x :: xs) = if f x then True else any f xs -- apply an expression at an arity to a list of args -- CAppRef will specify any missing args, for eta conversion later -- and any extra args get individual CApp. apply : QName -> List CExp -> SnocList CExp -> Nat -> M CExp -- out of args, make one up (fix that last arg) apply t Nil acc (S k) = pure $ CAppRef t (acc <>> Nil) (1 + cast k) apply t (x :: xs) acc (S k) = apply t xs (acc :< x) k -- once we hit zero, we fold the rest apply t ts acc Z = case acc of -- drop zero arg call Lin => go (CRef t) ts _ => go (CAppRef t (acc <>> Nil) 0) ts where go : CExp -> List CExp -> M CExp go t Nil = pure t go t (arg :: args) = go (CApp t arg) args lookupDef : {{Ref2 Defs St}} → FC → QName → M Def lookupDef fc nm = do defs <- getRef Defs case lookupMap' nm defs of Nothing => error fc "\{show nm} not in scope" Just def => pure def compileTerm : {{Ref2 Defs St}} → Tm -> M CExp compileTerm (Bnd _ k) = pure $ CBnd k -- need to eta expand to arity compileTerm t@(Ref fc nm@(QN _ tag)) = do arity <- arityForName fc nm defs <- getRef Defs case arity of -- we don't need to curry functions that take one argument (S Z) => pure $ CRef nm Z => case the (Maybe Def) $ lookupMap' nm defs of Just (DCon ix EnumCon _ _) => pure $ CLit $ LInt $ cast ix Just (DCon _ ZeroCon _ _) => pure $ CLit $ LInt 0 Just (DCon _ SuccCon _ _) => pure $ CLam "x" $ CPrimOp "+" (CLit $ LInt 1) (CBnd 0) _ => pure $ CRef nm _ => apply nm Nil Lin arity compileTerm (Meta fc k) = error fc "Compiling meta \{show k}" compileTerm (Lam _ nm _ _ t) = CLam nm <$> compileTerm t compileTerm tm@(App _ _ _) = case funArgs tm of (Meta _ k, args) => do error (getFC tm) "Compiling an unsolved meta \{show tm}" -- info (getFC tm) "Compiling an unsolved meta \{show tm}" -- pure $ CAppRef "Meta\{show k}" Nil 0 (t@(Ref fc nm), args) => do defs <- getRef Defs args' <- traverse compileTerm args arity <- arityForName fc nm let (Nothing) = compilePrimOp (show nm) args' | Just cexp => pure cexp case the (Maybe Def) $ lookupMap' nm defs of Just (DCon _ SuccCon _ _) => applySucc args' _ => apply nm args' Lin arity -- REVIEW maybe we want a different constructor for non-Ref applications? (t, args) => do debug $ \ _ => "apply other \{render 90 $ pprint Nil t}" t' <- compileTerm t args' <- traverse compileTerm args pure $ foldl CApp t' args' where applySucc : List CExp → M CExp applySucc Nil = pure $ CLam "x" $ CPrimOp "+" (CLit $ LInt 1) (CBnd 0) applySucc (t :: Nil) = pure $ CPrimOp "+" (CLit $ LInt 1) t applySucc _ = error emptyFC "overapplied Succ \{show tm}" compileTerm (UU _) = pure $ CRef (QN Nil "U") compileTerm (Pi _ nm icit rig t u) = do t' <- compileTerm t u' <- compileTerm u pure $ CAppRef (QN primNS "PiType") (t' :: CLam nm u' :: Nil) 0 compileTerm (Case fc t alts) = do t' <- compileTerm t alts' <- for alts $ \case CaseDefault tm => CDefAlt <$> compileTerm tm -- we use the base name for the tag, some primitives assume this CaseCons qn@(QN ns nm) args tm => do defs <- getRef Defs def <- lookupDef emptyFC qn case def of DCon ix info _ _ => CConAlt ix nm info args <$> compileTerm tm _ => error fc "\{show nm} is not constructor" CaseLit lit tm => CLitAlt lit <$> compileTerm tm pure $ CCase t' $ fancyCons t' alts' where numAltP : CAlt → Bool numAltP (CConAlt _ _ SuccCon _ _) = True numAltP (CConAlt _ _ ZeroCon _ _) = True numAltP _ = False enumAlt : CAlt → CAlt enumAlt (CConAlt ix nm EnumCon args tm) = CLitAlt (LInt $ cast ix) tm enumAlt alt = alt isInfo : ConInfo → CAlt → Bool isInfo needle (CConAlt _ _ info _ _) = needle == info isInfo _ _ = False isDef : CAlt → Bool isDef (CDefAlt _) = True isDef _ = False getBody : CAlt → CExp getBody (CConAlt _ _ _ _ t) = t getBody (CLitAlt _ t) = t getBody (CDefAlt t) = t doNumCon : CExp → List CAlt → List CAlt doNumCon sc alts = let zeroAlt = case find (isInfo ZeroCon) alts of Just (CConAlt _ _ _ _ tm) => CLitAlt (LInt 0) tm :: Nil Just tm => fatalError "ERROR zeroAlt mismatch \{debugStr tm}" _ => case find isDef alts of Just (CDefAlt tm) => CLitAlt (LInt 0) tm :: Nil -- This happens if the zero alt is impossible _ => Nil in let succAlt = case find (isInfo SuccCon) alts of Just (CConAlt _ _ _ _ tm) => CDefAlt (CLet "x" (CPrimOp "-" sc (CLit $ LInt 1)) tm) :: Nil Just tm => fatalError "ERROR succAlt mismatch \{debugStr tm}" _ => case find isDef alts of Just alt => alt :: Nil _ => Nil in zeroAlt ++ succAlt fancyCons : CExp → List CAlt → List CAlt fancyCons sc alts = if any numAltP alts then doNumCon sc alts else map enumAlt alts compileTerm (Lit _ lit) = pure $ CLit lit compileTerm (Let _ nm t u) = do t' <- compileTerm t u' <- compileTerm u pure $ CLet nm t' u' compileTerm (LetRec _ nm _ t u) = do t' <- compileTerm t u' <- compileTerm u pure $ CLetRec nm t' u' compileTerm (Erased _) = pure CErased compileFun : {{Ref2 Defs St}} → Tm -> M CExp compileFun tm = go tm Lin where go : Tm -> SnocList String -> M CExp go (Lam _ nm _ _ t) acc = go t (acc :< nm) go tm Lin = compileTerm tm go tm args = CFun (args <>> Nil) <$> compileTerm tm -- What are the Defs used for above? (Arity for name) compileDCon : Nat → QName → ConInfo → Int → CExp compileDCon ix (QN _ nm) EnumCon 0 = CLit $ LInt $ cast ix compileDCon ix (QN _ nm) info 0 = CConstr ix nm Nil compileDCon ix (QN _ nm) info arity = let args = map (\k => "h\{show k}") (range 0 arity) in CFun args $ CConstr ix nm $ map (\k => CBnd $ arity - k - 1) (range 0 arity) -- probably want to drop the Ref2 when we can defToCExp : {{Ref2 Defs St}} → (QName × Def) -> M (QName × CExp) defToCExp (qn, Axiom) = pure $ (qn, CErased) defToCExp (qn, DCon ix info arity _) = pure $ (qn, compileDCon ix qn info arity) -- FIXME need a number if we ever add typecase. defToCExp (qn, TCon arity _) = pure $ (qn, compileDCon Z qn NormalCon arity) defToCExp (qn, PrimTCon arity) = pure $ (qn, compileDCon Z qn NormalCon arity) defToCExp (qn, PrimFn src _ deps) = pure $ (qn, CRaw src deps) defToCExp (qn, Fn tm) = (_,_ qn) <$> compileFun tm