module Lib.Types -- For FC, Error import Lib.Common import Lib.Prettier import Data.Fin import Data.IORef import Data.List import Data.SnocList import Data.SortedMap import Data.String import Data.Vect data QName : U where QN : List String -> String -> QName instance Eq QName where QN ns n == QN ns' n' = n == n' && ns == ns' instance Show QName where show (QN Nil n) = n show (QN ns n) = joinBy "." ns ++ "." ++ n instance Interpolation QName where interpolate = show instance Ord QName where compare (QN ns nm) (QN ns' nm') = if ns == ns' then compare nm nm' else compare ns ns' Name : U Name = String data Icit = Implicit | Explicit | Auto instance Show Icit where show Implicit = "Implicit" show Explicit = "Explicit" show Auto = "Auto" data BD = Bound | Defined instance Eq BD where Bound == Bound = True Defined == Defined = True _ == _ = False instance Show BD where show Bound = "bnd" show Defined = "def" data Quant = Zero | Many instance Show Quant where show Zero = "0 " show Many = "" instance Eq Quant where Zero == Zero = True Many == Many = True _ == _ = False -- We could make this polymorphic and use for environment... data BindInfo : U where BI : (fc : FC) -> (name : Name) -> (icit : Icit) -> (quant : Quant) -> BindInfo instance HasFC BindInfo where getFC (BI fc _ _ _) = fc Tm : U data Literal = LString String | LInt Int | LChar Char instance Show Literal where show (LString str) = show str show (LInt i) = show i show (LChar c) = show c data CaseAlt : U where CaseDefault : Tm -> CaseAlt CaseCons : (name : QName) -> (args : List String) -> Tm -> CaseAlt CaseLit : Literal -> Tm -> CaseAlt Def : U instance Eq Literal where LString x == LString y = x == y LInt x == LInt y = x == y LChar x == LChar y = x == y _ == _ = False data Tm : U where Bnd : FC -> Int -> Tm -- Maybe Def here instead of Maybe Tm, we'll have DCon, TCon, etc. Ref : FC -> QName -> Def -> Tm Meta : FC -> Int -> Tm -- kovacs optimization, I think we can App out meta instead -- InsMeta : Int -> List BD -> Tm Lam : FC -> Name -> Icit -> Quant -> Tm -> Tm App : FC -> Tm -> Tm -> Tm UU : FC -> Tm Pi : FC -> Name -> Icit -> Quant -> Tm -> Tm -> Tm Case : FC -> Tm -> List CaseAlt -> Tm -- need type? Let : FC -> Name -> Tm -> Tm -> Tm -- for desugaring where LetRec : FC -> Name -> Tm -> Tm -> Tm -> Tm Lit : FC -> Literal -> Tm Erased : FC -> Tm instance HasFC Tm where getFC (Bnd fc k) = fc getFC (Ref fc str x) = fc getFC (Meta fc k) = fc getFC (Lam fc str _ _ t) = fc getFC (App fc t u) = fc getFC (UU fc) = fc getFC (Pi fc str icit quant t u) = fc getFC (Case fc t xs) = fc getFC (Lit fc _) = fc getFC (Let fc _ _ _) = fc getFC (LetRec fc _ _ _ _) = fc getFC (Erased fc) = fc showCaseAlt : CaseAlt → String instance Show Tm where show (Bnd _ k) = "(Bnd \{show k})" show (Ref _ str _) = "(Ref \{show str})" show (Lam _ nm icit rig t) = "(\\ \{show rig}\{nm} => \{show t})" show (App _ t u) = "(\{show t} \{show u})" show (Meta _ i) = "(Meta \{show i})" show (Lit _ l) = "(Lit \{show l})" show (UU _) = "U" show (Pi _ str Explicit rig t u) = "(Pi (\{show rig}\{str} : \{show t}) => \{show u})" show (Pi _ str Implicit rig t u) = "(Pi {\{show rig}\{str} : \{show t}} => \{show u})" show (Pi _ str Auto rig t u) = "(Pi {{\{show rig}\{str} : \{show t}}} => \{show u})" show (Case _ sc alts) = "(Case \{show sc} \{show $ map showCaseAlt alts})" show (Let _ nm t u) = "(Let \{nm} \{show t} \{show u})" show (LetRec _ nm ty t u) = "(LetRec \{nm} : \{show ty} \{show t} \{show u})" show (Erased _) = "ERASED" showCaseAlt (CaseDefault tm) = "_ => \{show tm}" showCaseAlt (CaseCons nm args tm) = "\{show nm} \{unwords args} => \{show tm}" showCaseAlt (CaseLit lit tm) = "\{show lit} => \{show tm}" showTm : Tm -> String showTm = show -- I can't really show val because it's HOAS... -- TODO derive instance Eq Icit where Implicit == Implicit = True Explicit == Explicit = True Auto == Auto = True _ == _ = False -- Eq on Tm. We've got deBruijn indices, so I'm not comparing names instance Eq (Tm) where -- (Local x) == (Local y) = x == y (Bnd _ x) == (Bnd _ y) = x == y (Ref _ x _) == Ref _ y _ = x == y (Lam _ n _ _ t) == Lam _ n' _ _ t' = t == t' (App _ t u) == App _ t' u' = t == t' && u == u' (UU _) == (UU _) = True (Pi _ n icit rig t u) == (Pi _ n' icit' rig' t' u') = icit == icit' && rig == rig' && t == t' && u == u' _ == _ = False -- TODO App and Lam should have <+/> but we need to fix -- INFO pprint to `nest 2 ...` -- maybe return Doc and have an Interpolation.. -- If we need to flatten, case is going to get in the way. pprint' : Int -> List String -> Tm -> Doc pprintAlt : Int -> List String -> CaseAlt -> Doc pprintAlt p names (CaseDefault t) = text "_" <+> text "=>" <+> pprint' p ("_" :: names) t pprintAlt p names (CaseCons name args t) = text (show name) <+> spread (map text args) <+> (nest 2 $ text "=>" <+/> pprint' p (reverse args ++ names) t) -- `;` is not in surface syntax, but sometimes we print on one line pprintAlt p names (CaseLit lit t) = text (show lit) <+> (nest 2 $ text "=>" <+/> pprint' p names t ++ text ";") parens : Int -> Int -> Doc -> Doc parens a b doc = if a < b then text "(" ++ doc ++ text ")" else doc pprint' p names (Bnd _ k) = case getAt (cast k) names of -- Either a bug or we're printing without names Nothing => text "BND:\{show k}" Just nm => text "\{nm}:\{show k}" pprint' p names (Ref _ str mt) = text (show str) pprint' p names (Meta _ k) = text "?m:\{show k}" pprint' p names (Lam _ nm icit quant t) = parens 0 p $ nest 2 $ text "\\ \{show quant}\{nm} =>" <+/> pprint' 0 (nm :: names) t pprint' p names (App _ t u) = parens 0 p $ pprint' 0 names t <+> pprint' 1 names u pprint' p names (UU _) = text "U" pprint' p names (Pi _ nm Auto rig t u) = parens 0 p $ text "{{" ++ text (show rig) <+> text nm <+> text ":" <+> pprint' 0 names t <+> text "}}" <+> text "->" <+> pprint' 0 (nm :: names) u pprint' p names (Pi _ nm Implicit rig t u) = parens 0 p $ text "{" ++ text (show rig) <+> text nm <+> text ":" <+> pprint' 0 names t <+> text "}" <+> text "->" <+> pprint' 0 (nm :: names) u pprint' p names (Pi _ "_" Explicit Many t u) = parens 0 p $ pprint' 1 names t <+> text "->" <+> pprint' 0 ("_" :: names) u pprint' p names (Pi _ nm Explicit rig t u) = parens 0 p $ text "(" ++ text (show rig) <+> text nm <+> text ":" <+> pprint' 0 names t ++ text ")" <+> text "->" <+> pprint' 0 (nm :: names) u -- FIXME - probably way wrong on the names here. There is implicit binding going on pprint' p names (Case _ sc alts) = parens 0 p $ text "case" <+> pprint' 0 names sc <+> text "of" ++ (nest 2 (line ++ stack (map (pprintAlt 0 names) alts))) pprint' p names (Lit _ lit) = text (show lit) pprint' p names (Let _ nm t u) = parens 0 p $ text "let" <+> text nm <+> text ":=" <+> pprint' 0 names t <+> text "in" (nest 2 $ pprint' 0 (nm :: names) u) pprint' p names (LetRec _ nm ty t u) = parens 0 p $ text "letrec" <+> text nm <+> text ":" <+> pprint' 0 names ty <+> text ":=" <+> pprint' 0 names t <+> text "in" (nest 2 $ pprint' 0 (nm :: names) u) pprint' p names (Erased _) = text "ERASED" -- Pretty printer for Tm. pprint : List String -> Tm -> Doc pprint names tm = pprint' 0 names tm Val : U -- IS/TypeTheory.idr is calling this a Kripke function space -- Yaffle, IS/TypeTheory use a function here. -- Kovacs, Idris use Env and Tm -- in cctt kovacs refers to this choice as defunctionalization vs HOAS -- https://github.com/AndrasKovacs/cctt/blob/main/README.md#defunctionalization -- the tradeoff is access to internals of the function -- Yaffle is vars -> vars here Closure : U data Val : U where -- This will be local / flex with spine. VVar : FC -> (k : Int) -> (sp : SnocList Val) -> Val VRef : FC -> (nm : QName) -> Def -> (sp : SnocList Val) -> Val -- neutral case VCase : FC -> (sc : Val) -> List CaseAlt -> Val -- we'll need to look this up in ctx with IO VMeta : FC -> (ix : Int) -> (sp : SnocList Val) -> Val VLam : FC -> Name -> Icit -> Quant -> Closure -> Val VPi : FC -> Name -> Icit -> Quant -> (a : Val) -> (b : Closure) -> Val VLet : FC -> Name -> Val -> Val -> Val VLetRec : FC -> Name -> Val -> Val -> Val -> Val VU : FC -> Val VErased : FC -> Val VLit : FC -> Literal -> Val Env : U Env = List Val data Mode = CBN | CBV data Closure = MkClosure Env Tm getValFC : Val -> FC getValFC (VVar fc _ _) = fc getValFC (VRef fc _ _ _) = fc getValFC (VCase fc _ _) = fc getValFC (VMeta fc _ _) = fc getValFC (VLam fc _ _ _ _) = fc getValFC (VPi fc _ _ _ a b) = fc getValFC (VU fc) = fc getValFC (VErased fc) = fc getValFC (VLit fc _) = fc getValFC (VLet fc _ _ _) = fc getValFC (VLetRec fc _ _ _ _) = fc instance HasFC Val where getFC = getValFC showClosure : Closure → String instance Show Val where show (VVar _ k Lin) = "%var\{show k}" show (VVar _ k sp) = "(%var\{show k} \{unwords $ map show (sp <>> Nil)})" show (VRef _ nm _ Lin) = show nm show (VRef _ nm _ sp) = "(\{show nm} \{unwords $ map show (sp <>> Nil)})" show (VMeta _ ix sp) = "(%meta \{show ix} (\{show $ snoclen sp} sp :: Nil))" show (VLam _ str icit quant x) = "(%lam \{show quant}\{str} \{showClosure x})" show (VPi fc str Implicit rig x y) = "(%pi {\{show rig} \{str} : \{show x}}. \{showClosure y})" show (VPi fc str Explicit rig x y) = "(%pi (\{show rig} \{str} : \{show x}). \{showClosure y})" show (VPi fc str Auto rig x y) = "(%pi {{\{show rig} \{str} : \{show x}}}. \{showClosure y})" show (VCase fc sc alts) = "(%case \{show sc} ...)" show (VU _) = "U" show (VLit _ lit) = show lit show (VLet _ nm a b) = "(%let \{show nm} = \{show a} in \{show b}" show (VLetRec _ nm ty a b) = "(%letrec \{show nm} : \{show ty} = \{show a} in \{show b}" show (VErased _) = "ERASED" showClosure (MkClosure xs t) = "(%cl (\{show $ length xs} env :: Nil) \{show t})" -- instance Show Closure where -- show = showClosure Context : U data MetaKind = Normal | User | AutoSolve instance Show MetaKind where show Normal = "Normal" show User = "User" show AutoSolve = "Auto" -- constrain meta applied to val to be a val data MConstraint = MkMc FC Env (SnocList Val) Val data MetaEntry = Unsolved FC Int Context Val MetaKind (List MConstraint) | Solved FC Int Val record MetaContext where constructor MC metas : List MetaEntry next : Int data Def = Axiom | TCon (List QName) | DCon Int QName | Fn Tm | PrimTCon | PrimFn String (List String) instance Show Def where show Axiom = "axiom" show (TCon strs) = "TCon \{show strs}" show (DCon k tyname) = "DCon \{show k} \{show tyname}" show (Fn t) = "Fn \{show t}" show (PrimTCon) = "PrimTCon" show (PrimFn src used) = "PrimFn \{show src} \{show used}" -- entry in the top level context record TopEntry where constructor MkEntry fc : FC name : QName type : Tm def : Def -- FIXME snoc instance Show TopEntry where show (MkEntry fc name type def) = "\{show name} : \{show type} := \{show def}" -- Top level context. -- Most of the reason this is separate is to have a different type -- `Def` for the entries. -- -- The price is that we have names in addition to levels. Do we want to -- expand these during normalization? record TopContext where constructor MkTop -- We'll add a map later? defs : SortedMap QName TopEntry metaCtx : IORef MetaContext verbose : Bool -- command line flag errors : IORef (List Error) -- loaded modules loaded : List String ops : Operators -- we'll use this for typechecking, but need to keep a TopContext around too. record Context where constructor MkCtx lvl : Int -- shall we use lvl as an index? env : Env -- Values in scope types : List (String × Val) -- types and names in scope -- so we'll try "bds" determines length of local context bds : List BD -- bound or defined -- FC to use if we don't have a better option ctxFC : FC -- add a binding to environment extend : Context -> String -> Val -> Context extend (MkCtx lvl env types bds ctxFC) name ty = MkCtx (1 + lvl) (VVar emptyFC lvl Lin :: env) ((name,ty) :: types) (Bound :: bds) ctxFC -- I guess we define things as values? define : Context -> String -> Val -> Val -> Context define (MkCtx lvl env types bds ctxFC) name val ty = MkCtx (1 + lvl) (val :: env) ((name,ty) :: types) (Defined :: bds) ctxFC instance Show MetaEntry where show (Unsolved pos k ctx ty kind constraints) = "Unsolved \{show pos} \{show k} \{show kind} : \{show ty} \{show ctx.bds} cs \{show $ length constraints}" show (Solved _ k x) = "Solved \{show k} \{show x}" withPos : Context -> FC -> Context withPos (MkCtx lvl env types bds ctxFC) fc = (MkCtx lvl env types bds fc) names : Context -> List String names ctx = map fst ctx.types -- public export -- M : U -> U -- M = (StateT TopContext (EitherT Error IO)) record M a where constructor MkM runM : TopContext -> IO (Either Error (TopContext × a)) instance Functor M where map f (MkM run) = MkM $ \tc => bind {IO} (run tc) $ \case Left err => pure $ Left err Right (tc', a) => pure $ Right (tc', f a) instance Applicative M where return x = MkM $ \tc => pure $ Right (tc, x) (MkM f) <*> (MkM x) = MkM $ \tc => bind {IO} (f tc) $ \case Left err => pure $ Left err Right (tc', f') => bind {IO} (x tc') $ \case Left err => pure $ Left err Right (tc'', x') => pure $ Right (tc'', f' x') instance Monad M where pure = return bind (MkM x) f = MkM $ \tc => bind {IO} (x tc) $ \case Left err => pure $ Left err Right (tc', a) => runM (f a) tc' instance HasIO M where liftIO io = MkM $ \tc => do result <- io pure $ Right (tc, result) throwError : ∀ a. Error -> M a throwError err = MkM $ \_ => pure $ Left err catchError : ∀ a. M a -> (Error -> M a) -> M a catchError (MkM ma) handler = MkM $ \tc => bind {IO} (ma tc) $ \case Left err => runM (handler err) tc Right (tc', a) => pure $ Right (tc', a) tryError : ∀ a. M a -> M (Either Error a) tryError ma = catchError (map Right ma) (pure ∘ Left) get : M TopContext get = MkM $ \ tc => pure $ Right (tc, tc) put : TopContext -> M Unit put tc = MkM $ \_ => pure $ Right (tc, MkUnit) modify : (TopContext -> TopContext) -> M Unit modify f = do tc <- get put (f tc) -- Force argument and print if verbose is true debug : Lazy String -> M Unit debug x = do top <- get when top.verbose $ \ _ => putStrLn $ force x info : FC -> String -> M Unit info fc msg = putStrLn "INFO at \{show fc}: \{msg}" -- Version of debug that makes monadic computation lazy debugM : M String -> M Unit debugM x = do top <- get when top.verbose $ \ _ => do msg <- x putStrLn msg instance Show Context where show ctx = "Context \{show $ map fst $ ctx.types}" errorMsg : Error -> String errorMsg (E x str) = str errorMsg (Postpone x k str) = str instance HasFC Error where getFC (E x str) = x getFC (Postpone x k str) = x error : ∀ a. FC -> String -> M a error fc msg = throwError $ E fc msg error' : ∀ a. String -> M a error' msg = throwError $ E emptyFC msg freshMeta : Context -> FC -> Val -> MetaKind -> M Tm freshMeta ctx fc ty kind = do top <- get mc <- readIORef top.metaCtx debug $ \ _ => "fresh meta \{show mc.next} : \{show ty} (\{show kind})" writeIORef top.metaCtx $ MC (Unsolved fc mc.next ctx ty kind Nil :: mc.metas) (1 + mc.next) pure $ applyBDs 0 (Meta fc mc.next) ctx.bds where -- hope I got the right order here :) applyBDs : Int -> Tm -> List BD -> Tm applyBDs k t Nil = t -- review the order here applyBDs k t (Bound :: xs) = App emptyFC (applyBDs (1 + k) t xs) (Bnd emptyFC k) applyBDs k t (Defined :: xs) = applyBDs (1 + k) t xs lookupMeta : Int -> M MetaEntry lookupMeta ix = do top <- get mc <- readIORef top.metaCtx go mc.metas where go : List MetaEntry -> M MetaEntry go Nil = error' "Meta \{show ix} not found" go (meta@(Unsolved _ k ys _ _ _) :: xs) = if k == ix then pure meta else go xs go (meta@(Solved _ k x) :: xs) = if k == ix then pure meta else go xs -- we need more of topcontext later - Maybe switch it up so we're not passing -- around top mkCtx : FC -> Context mkCtx fc = MkCtx 0 Nil Nil Nil fc