||| First pass of compilation ||| - work out arities and fully apply functions / constructors (currying) ||| currying is problemmatic because we need to insert lambdas (η-expand) and ||| it breaks all of the de Bruijn indices ||| - expand metas (this is happening earlier) ||| - erase stuff (there is another copy that essentially does the same thing) ||| I could make names unique (e.q. on lambdas), but I might want that to vary per backend? module Lib.CompileExp import Data.List import Lib.Types -- Name / Tm import Lib.TopContext import Lib.Prettier import Lib.Util public export data CExp : Type public export data CAlt : Type where CConAlt : String -> List String -> CExp -> CAlt -- REVIEW keep var name? CDefAlt : CExp -> CAlt -- literal CLitAlt : Literal -> CExp -> CAlt data CExp : Type where CBnd : Nat -> CExp CLam : Name -> CExp -> CExp CFun : List Name -> CExp -> CExp -- REVIEW This feels like a hack, but if we put CLam here, the -- deBruijn gets messed up in code gen CApp : CExp -> List CExp -> Nat -> CExp -- TODO make DCon/TCon app separate so we can specialize -- U / Pi are compiled to type constructors CCase : CExp -> List CAlt -> CExp CRef : Name -> CExp CMeta : Nat -> CExp CLit : Literal -> CExp CLet : Name -> CExp -> CExp -> CExp CLetRec : Name -> CExp -> CExp -> CExp CErased : CExp ||| I'm counting Lam in the term for arity. This matches what I need in ||| code gen. export lamArity : Tm -> Nat lamArity (Lam _ _ _ _ t) = S (lamArity t) lamArity _ = Z export piArity : Tm -> Nat piArity (Pi _ _ _ quant _ b) = S (piArity b) piArity _ = Z ||| This is how much we want to curry at top level ||| leading lambda Arity is used for function defs and metas ||| TODO - figure out how this will work with erasure arityForName : FC -> QName -> M Nat arityForName fc nm = case lookup nm !get of -- let the magic hole through for now (will generate bad JS) Nothing => error fc "Name \{show nm} not in scope" (Just (MkEntry _ name type Axiom)) => pure 0 (Just (MkEntry _ name type (TCon strs))) => pure $ piArity type (Just (MkEntry _ name type (DCon k str))) => pure k (Just (MkEntry _ name type (Fn t))) => pure $ lamArity t (Just (MkEntry _ name type (PrimTCon))) => pure $ piArity type -- Assuming a primitive can't return a function (Just (MkEntry _ name type (PrimFn t uses))) => pure $ piArity type export compileTerm : Tm -> M CExp -- need to eta out extra args, fill in the rest of the apps apply : CExp -> List CExp -> SnocList CExp -> Nat -> Tm -> M CExp -- out of args, make one up (fix that last arg) apply t [] acc (S k) ty = pure $ CApp t (acc <>> []) (S k) -- inserting Clam, index wrong? -- CLam "eta\{show k}" !(apply t [] (acc :< CBnd k) k ty) apply t (x :: xs) acc (S k) (Pi y str icit Zero a b) = apply t xs (acc :< CErased) k b apply t (x :: xs) acc (S k) (Pi y str icit Many a b) = apply t xs (acc :< x) k b -- see if there is anything we have to handle here apply t (x :: xs) acc (S k) ty = error (getFC ty) "Expected pi \{showTm ty}. Overapplied function that escaped type checking?" -- once we hit zero, we fold the rest apply t ts acc 0 ty = go (CApp t (acc <>> []) Z) ts where go : CExp -> List CExp -> M CExp -- drop zero arg call go (CApp t [] Z) args = go t args go t [] = pure t go t (arg :: args) = go (CApp t [arg] 0) args -- apply : CExp -> List CExp -> SnocList CExp -> Nat -> M CExp -- -- out of args, make one up -- apply t [] acc (S k) = pure $ -- CLam "eta\{show k}" !(apply t [] (acc :< CBnd k) k) -- apply t (x :: xs) acc (S k) = apply t xs (acc :< x) k -- apply t ts acc 0 = go (CApp t (acc <>> [])) ts -- where -- go : CExp -> List CExp -> M CExp -- -- drop zero arg call -- go (CApp t []) args = go t args -- go t [] = pure t -- go t (arg :: args) = go (CApp t [arg]) args compileTerm (Bnd _ k) = pure $ CBnd k -- need to eta expand to arity compileTerm t@(Ref fc nm _) = do top <- get let Just (MkEntry _ _ type _) = lookup nm top | Nothing => error fc "Undefined name \{nm}" apply (CRef (show nm)) [] [<] !(arityForName fc nm) type compileTerm (Meta _ k) = pure $ CRef "meta$\{show k}" -- FIXME compileTerm (Lam _ nm _ _ t) = pure $ CLam nm !(compileTerm t) compileTerm tm@(App _ _ _) with (funArgs tm) _ | (Meta _ k, args) = do error (getFC tm) "Compiling an unsolved meta \{showTm tm}" info (getFC tm) "Compiling an unsolved meta \{showTm tm}" pure $ CApp (CRef "Meta\{show k}") [] Z _ | (t@(Ref fc nm _), args) = do args' <- traverse compileTerm args arity <- arityForName fc nm top <- get let Just (MkEntry _ _ type _) = lookup nm top | Nothing => error fc "Undefined name \{nm}" apply (CRef (show nm)) args' [<] arity type _ | (t, args) = do debug "apply other \{pprint [] t}" t' <- compileTerm t args' <- traverse compileTerm args apply t' args' [<] 0 (UU emptyFC) -- error (getFC t) "Don't know how to apply \{showTm t}" compileTerm (UU _) = pure $ CRef "U" compileTerm (Pi _ nm icit rig t u) = pure $ CApp (CRef "PiType") [ !(compileTerm t), CLam nm !(compileTerm u)] Z compileTerm (Case _ t alts) = do t' <- compileTerm t alts' <- traverse (\case CaseDefault tm => pure $ CDefAlt !(compileTerm tm) -- we use the base name for the tag, some primitives assume this CaseCons (QN ns nm) args tm => pure $ CConAlt nm args !(compileTerm tm) CaseLit lit tm => pure $ CLitAlt lit !(compileTerm tm)) alts pure $ CCase t' alts' compileTerm (Lit _ lit) = pure $ CLit lit compileTerm (Let _ nm t u) = pure $ CLet nm !(compileTerm t) !(compileTerm u) compileTerm (LetRec _ nm _ t u) = pure $ CLetRec nm !(compileTerm t) !(compileTerm u) compileTerm (Erased _) = pure CErased export compileFun : Tm -> M CExp compileFun tm = go tm [<] where go : Tm -> SnocList String -> M CExp go (Lam _ nm _ _ t) acc = go t (acc :< nm) go tm [<] = compileTerm tm go tm args = pure $ CFun (args <>> []) !(compileTerm tm)