Files
newt/tests/black/Case3.newt
2024-09-29 07:17:55 -07:00

54 lines
1.5 KiB
Plaintext

module Case3
data Nat : U where
Z : Nat
S : Nat -> Nat
data Vect : Nat -> U -> U where
Nil : {a : U} -> Vect Z a
_::_ : {a : U} -> {k : Nat} -> a -> Vect k a -> Vect (S k) a
infixr 5 _::_
head : {a : U} {k : Nat} -> Vect (S k) a -> a
head (x :: xs) = x
-- These came from a Conor McBride lecture where they use SHE
vapp : {s t: U} {k : Nat} -> Vect k (s -> t) -> Vect k s -> Vect k t
vapp (f :: fs) (t :: ts) = f t :: vapp fs ts
vapp Nil Nil = Nil
vec : { a : U } -> (n : Nat) -> a -> Vect n a
vec Z x = Nil
vec (S k) x = x :: vec k x
-- And then typeclass, which I don't have yet. I'll add a few underlying functions
fmap : {a b : U} {n : Nat} -> (a -> b) -> Vect n a -> Vect n b
fmap f Nil = Nil
fmap f (x :: xs) = (f x :: fmap f xs)
pure : {a : U} {n : Nat} -> a -> Vect n a
pure {a} {n} = vec n
_<*>_ : {s t: U} {k : Nat} -> Vect k (s -> t) -> Vect k s -> Vect k t
_<*>_ = vapp
-- and idiom brackets (maybe someday)
-- I'll add foldl
foldl : {acc el : U} {n : Nat} -> (acc -> el -> acc) -> acc -> Vect n el -> acc
foldl f acc Nil = acc
foldl f acc (x :: xs) = foldl f (f acc x) xs
zipWith : {a b c : U} {m : Nat} -> (a -> b -> c) -> Vect m a -> Vect m b -> Vect m c
zipWith f Nil Nil = Nil
zipWith f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys
transpose : {a : U} {m n : Nat} -> Vect m (Vect n a) -> Vect n (Vect m a)
-- TODO Doesn't work without the (forced) Z, investigate
transpose {a} {Z} {n} Nil = vec n Nil
transpose {a} {S k} {n} (x :: xs) = zipWith (_::_) x (transpose xs)