Files
newt/playground/samples/DSL.newt

121 lines
2.4 KiB
Agda
Raw Blame History

module DSL
-- https://www.youtube.com/watch?v=sFyy9sssK50
data : U where
Z :
S :
infixl 7 _+_
infixl 8 _*_
_+_ :
Z + m = m
(S k) + m = S (k + m)
_*_ :
Z * m = Z
(S k) * m = m + k * m
infixr 4 _::_
data Vec : U U where
Nil : {a} Vec a Z
_::_ : {a k} a Vec a k Vec a (S k)
infixl 5 _++_
_++_ : {a n m} Vec a n Vec a m Vec a (n + m)
Nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
map : {a b n} (a b) Vec a n Vec b n
map f Nil = Nil
map f (x :: xs) = f x :: map f xs
data E : U where
Zero : E
One : E
Add : E E E
Mul : E E E
two : E
two = Add One One
four : E
four = Mul two two
card : E
card Zero = Z
card One = S Z
card (Add x y) = card x + card y
card (Mul x y) = card x * card y
data Empty : U where
data Unit : U where
-- unit accepted but case building thinks its a var
unit : Unit
data Either : U -> U -> U where
Left : {A B} A Either A B
Right : {A B} B Either A B
infixr 4 _,_
data Both : U U U where
_,_ : {A B} A B Both A B
typ : E U
typ Zero = Empty
typ One = Unit
typ (Add x y) = Either (typ x) (typ y)
typ (Mul x y) = Both (typ x) (typ y)
Bool : U
Bool = typ two
false : Bool
false = Left unit
true : Bool
true = Right unit
BothBoolBool : U
BothBoolBool = typ four
ex1 : BothBoolBool
ex1 = (false, true)
enumAdd : {a b m n} Vec a m Vec b n Vec (Either a b) (m + n)
enumAdd xs ys = map Left xs ++ map Right ys
-- for this I followed the shape of _*_, the lecture was slightly different
enumMul : {a b m n} Vec a m Vec b n Vec (Both a b) (m * n)
enumMul Nil ys = Nil
enumMul (x :: xs) ys = map (_,_ x) ys ++ enumMul xs ys
enumerate : (t : E) Vec (typ t) (card t)
enumerate Zero = Nil
enumerate One = unit :: Nil
enumerate (Add x y) = enumAdd (enumerate x) (enumerate y)
enumerate (Mul x y) = enumMul (enumerate x) (enumerate y)
test2 : Vec (typ two) (card two)
test2 = enumerate two
test4 : Vec (typ four) (card four)
test4 = enumerate four
-- TODO I need to add #eval, like Lean
-- #eval enumerate two
-- for now, I'll define ≡ to check
infixl 2 _≡_
data _≡_ : {A} A A U where
Refl : {A} {a : A} a a
test2' : test2 false :: true :: Nil
test2' = Refl
test4' : test4 (false, false) :: (false, true) :: (true, false) :: (true, true) :: Nil
test4' = Refl