Files
newt/port/Lib/CompileExp.newt
2025-01-06 16:28:40 -08:00

167 lines
5.9 KiB
Agda

-- First pass of compilation
-- - work out arities and fully apply functions / constructors (currying)
-- currying is problemmatic because we need to insert lambdas (η-expand) and
-- it breaks all of the de Bruijn indices
-- - expand metas (this is happening earlier)
-- - erase stuff (there is another copy that essentially does the same thing)
-- I could make names unique (e.q. on lambdas), but I might want that to vary per backend?
module Lib.CompileExp
import Lib.Types -- Name / Tm
import Lib.TopContext
import Lib.Prettier
import Lib.Util
CExp : U
data CAlt : U where
CConAlt : String -> List String -> CExp -> CAlt
-- REVIEW keep var name?
CDefAlt : CExp -> CAlt
-- literal
CLitAlt : Literal -> CExp -> CAlt
data CExp : U where
CBnd : Int -> CExp
CLam : Name -> CExp -> CExp
CFun : List Name -> CExp -> CExp
-- REVIEW This feels like a hack, but if we put CLam here, the
-- deBruijn gets messed up in code gen
CApp : CExp -> List CExp -> Int -> CExp
-- TODO make DCon/TCon app separate so we can specialize
-- U / Pi are compiled to type constructors
CCase : CExp -> List CAlt -> CExp
CRef : Name -> CExp
CMeta : Int -> CExp
CLit : Literal -> CExp
CLet : Name -> CExp -> CExp -> CExp
CLetRec : Name -> CExp -> CExp -> CExp
CErased : CExp
-- I'm counting Lam in the term for arity. This matches what I need in
-- code gen.
lamArity : Tm -> Nat
lamArity (Lam _ _ _ _ t) = S (lamArity t)
lamArity _ = Z
piArity : Tm -> Nat
piArity (Pi _ _ _ quant _ b) = S (piArity b)
piArity _ = Z
-- This is how much we want to curry at top level
-- leading lambda Arity is used for function defs and metas
-- TODO - figure out how this will work with erasure
arityForName : FC -> QName -> M Nat
arityForName fc nm = do
top <- get
case lookup nm top of
-- let the magic hole through for now (will generate bad JS)
Nothing => error fc "Name \{show nm} not in scope"
(Just (MkEntry _ name type Axiom)) => pure Z
(Just (MkEntry _ name type (TCon strs))) => pure $ piArity type
(Just (MkEntry _ name type (DCon k str))) => pure $ cast k
(Just (MkEntry _ name type (Fn t))) => pure $ lamArity t
(Just (MkEntry _ name type (PrimTCon))) => pure $ piArity type
-- Assuming a primitive can't return a function
(Just (MkEntry _ name type (PrimFn t used))) => pure $ piArity type
compileTerm : Tm -> M CExp
-- need to eta out extra args, fill in the rest of the apps
apply : CExp -> List CExp -> SnocList CExp -> Nat -> Tm -> M CExp
-- out of args, make one up (fix that last arg)
apply t Nil acc (S k) ty = pure $ CApp t (acc <>> Nil) (1 + cast k)
-- inserting Clam, index wrong?
-- CLam "eta\{show k}" !(apply t Nil (acc :< CBnd k) k ty)
apply t (x :: xs) acc (S k) (Pi y str icit Zero a b) = apply t xs (acc :< CErased) k b
apply t (x :: xs) acc (S k) (Pi y str icit Many a b) = apply t xs (acc :< x) k b
-- see if there is anything we have to handle here
apply t (x :: xs) acc (S k) ty = error (getFC ty) "Expected pi \{showTm ty}. Overapplied function that escaped type checking?"
-- once we hit zero, we fold the rest
apply t ts acc Z ty = go (CApp t (acc <>> Nil) 0) ts
where
go : CExp -> List CExp -> M CExp
-- drop zero arg call
go (CApp t Nil 0) args = go t args
go t Nil = pure t
go t (arg :: args) = go (CApp t (arg :: Nil) 0) args
-- apply : CExp -> List CExp -> SnocList CExp -> Int -> M CExp
-- -- out of args, make one up
-- apply t Nil acc (S k) = pure $
-- CLam "eta\{show k}" !(apply t Nil (acc :< CBnd k) k)
-- apply t (x :: xs) acc (S k) = apply t xs (acc :< x) k
-- apply t ts acc 0 = go (CApp t (acc <>> Nil)) ts
-- where
-- go : CExp -> List CExp -> M CExp
-- -- drop zero arg call
-- go (CApp t Nil) args = go t args
-- go t Nil = pure t
-- go t (arg :: args) = go (CApp t (arg :: Nil)) args
compileTerm (Bnd _ k) = pure $ CBnd k
-- need to eta expand to arity
compileTerm t@(Ref fc nm _) = do
top <- get
let (Just (MkEntry _ _ type _)) = lookup nm top
| Nothing => error fc "Undefined name \{show nm}"
arity <- arityForName fc nm
apply (CRef (show nm)) Nil Lin arity type
compileTerm (Meta _ k) = pure $ CRef "meta$\{show k}" -- FIXME
compileTerm (Lam _ nm _ _ t) = CLam nm <$> compileTerm t
compileTerm tm@(App _ _ _) = case funArgs tm of
(Meta _ k, args) => do
-- this will be undefined, should only happen for use metas
pure $ CApp (CRef "Meta\{show k}") Nil 0
(t@(Ref fc nm _), args) => do
args' <- traverse compileTerm args
arity <- arityForName fc nm
top <- get
let (Just (MkEntry _ _ type _)) = lookup nm top
| Nothing => error fc "Undefined name \{show nm}"
apply (CRef (show nm)) args' Lin arity type
(t, args) => do
debug $ \ _ => "apply other \{render 90 $ pprint Nil t}"
t' <- compileTerm t
args' <- traverse compileTerm args
apply t' args' Lin Z (UU emptyFC)
-- error (getFC t) "Don't know how to apply \{showTm t}"
compileTerm (UU _) = pure $ CRef "U"
compileTerm (Pi _ nm icit rig t u) = do
t' <- compileTerm t
u' <- compileTerm u
pure $ CApp (CRef "PiType") (t' :: CLam nm u' :: Nil) 0
compileTerm (Case _ t alts) = do
t' <- compileTerm t
alts' <- for alts $ \case
CaseDefault tm => CDefAlt <$> compileTerm tm
-- we use the base name for the tag, some primitives assume this
CaseCons (QN ns nm) args tm => CConAlt nm args <$> compileTerm tm
CaseLit lit tm => CLitAlt lit <$> compileTerm tm
pure $ CCase t' alts'
compileTerm (Lit _ lit) = pure $ CLit lit
compileTerm (Let _ nm t u) = do
t' <- compileTerm t
u' <- compileTerm u
pure $ CLet nm t' u'
compileTerm (LetRec _ nm _ t u) = do
t' <- compileTerm t
u' <- compileTerm u
pure $ CLetRec nm t' u'
compileTerm (Erased _) = pure CErased
compileFun : Tm -> M CExp
compileFun tm = go tm Lin
where
go : Tm -> SnocList String -> M CExp
go (Lam _ nm _ _ t) acc = go t (acc :< nm)
go tm Lin = compileTerm tm
go tm args = CFun (args <>> Nil) <$> compileTerm tm