Files
newt/src/Prelude.newt

920 lines
23 KiB
Agda
Raw Blame History

module Prelude
id : a. a a
id x = x
the : (a : U) a a
the _ a = a
const : a b. a b a
const a b = a
data Unit = MkUnit
-- False first so it ends up being false
data Bool = False | True
not : Bool Bool
not True = False
not False = True
-- In Idris, this is lazy in the second arg, we're not doing
-- magic laziness for now, it's messy
infixr 4 _||_
_||_ : Bool Bool Bool
True || _ = True
False || b = b
infixr 5 _&&_
_&&_ : Bool Bool Bool
False && b = False
True && b = b
infixl 6 _==_
class Eq a where
_==_ : a a Bool
infixl 6 _/=_
_/=_ : a. {{Eq a}} a a Bool
a /= b = not (a == b)
data Nat = Z | S Nat
pred : Nat Nat
pred Z = Z
pred (S k) = k
instance Eq Nat where
Z == Z = True
S n == S m = n == m
x == y = False
data Maybe a = Just a | Nothing
fromMaybe : a. a Maybe a a
fromMaybe a Nothing = a
fromMaybe _ (Just a) = a
maybe : a b. b (a b) Maybe a b
maybe def f (Just a) = f a
maybe def f Nothing = def
data Either a b = Left a | Right b
infixr 7 _::_
data List a = Nil | a :: List a
length : a. List a Nat
length Nil = Z
length (x :: xs) = S (length xs)
infixl 7 _:<_
data SnocList a = Lin | SnocList a :< a
-- 'chips'
infixr 6 _<>>_ _<><_
_<>>_ : a. SnocList a List a List a
Lin <>> ys = ys
(xs :< x) <>> ys = xs <>> x :: ys
_<><_ : a. SnocList a List a SnocList a
xs <>< Nil = xs
xs <>< (y :: ys) = (xs :< y) <>< ys
-- This is now handled by the parser, and LHS becomes `f a`.
-- infixr 0 _$_
-- _$_ : ∀ a b. (a → b) → a → b
-- f $ a = f a
infixr 8 _×_
infixr 2 _,_
data a × b = (a,b)
fst : a b. a × b a
fst (a,b) = a
snd : a b. a × b b
snd (a,b) = b
-- Monad
class Monad (m : U U) where
bind : a b. m a (a m b) m b
pure : a. a m a
infixl 1 _>>=_ _>>_
_>>=_ : m a b. {{Monad m}} (m a) (a m b) m b
ma >>= amb = bind ma amb
_>>_ : m a b. {{Monad m}} m a m b m b
ma >> mb = bind ma (\ _ => mb)
join : m a. {{Monad m}} m (m a) m a
join mma = mma >>= id
-- Equality
infixl 1 _≡_
data _≡_ : A. A A U where
Refl : A. {0 a : A} a a
replace : A. {0 a b : A} (P : A U) a b P a P b
replace p Refl x = x
cong : A B. {0 a b : A} (f : A B) a b f a f b
cong f Refl = Refl
sym : A. {0 a b : A} a b b a
sym Refl = Refl
data Void : U where
¬ : U U
¬ x = x Void
data Dec : U U where
Yes : prop. (prf : prop) Dec prop
No : prop. (contra : ¬ prop) Dec prop
class DecEq t where
decEq : (x₁ : t) (x₂ : t) Dec (x₁ x₂)
-- Functor
class Functor (m : U U) where
map : a b. (a b) m a m b
infixr 4 _<$>_ _<$_
_<$>_ : f. {{Functor f}} {0 a b} (a b) f a f b
f <$> ma = map f ma
_<$_ : f a b. {{Functor f}} b f a f b
a <$ b = const a <$> b
instance Functor Maybe where
map f Nothing = Nothing
map f (Just a) = Just (f a)
reverse : a. List a List a
reverse {a} = go Nil
where
go : List a List a List a
go acc Nil = acc
go acc (x :: xs) = go (x :: acc) xs
instance Functor List where
map f xs = go f xs Nil
where
go : a b. (a b) List a List b List b
go f Nil ys = reverse ys
go f (x :: xs) ys = go f xs (f x :: ys)
-- map f Nil = Nil
-- map f (x :: xs) = f x :: map f xs
instance Functor SnocList where
map f Lin = Lin
map f (xs :< x) = map f xs :< f x
-- TODO this probably should depend on / entail Functor
infixl 3 _<*>_ _<*_ _*>_
class Applicative (f : U U) where
-- appIsFunctor : Functor f
return : a. a f a
_<*>_ : a b. f (a b) f a f b
_<*_ : f a b. {{Applicative f}} f a f b f a
fa <* fb = return const <*> fa <*> fb
_*>_ : f a b. {{Functor f}} {{Applicative f}} f a f b f b
a *> b = map (const id) a <*> b
class Traversable (t : U U) where
traverse : f a b. {{Applicative f}} (a f b) t a f (t b)
instance Traversable List where
traverse f Nil = return Nil
traverse f (x :: xs) = return _::_ <*> f x <*> traverse f xs
traverse_ : t f a b. {{Traversable t}} {{Applicative f}} (a f b) t a f Unit
traverse_ f xs = return (const MkUnit) <*> traverse f xs
for : {0 t : U U} {0 f : U U} {{Traversable t}} {{appf : Applicative f}} {0 a : U} {0 b : U} t a (a f b) f (t b)
for stuff fun = traverse fun stuff
for_ : {0 t : U U} {0 f : U U} {{Traversable t}} {{appf : Applicative f}} {0 a : U} {0 b : U} t a (a f b) f Unit
for_ stuff fun = return (const MkUnit) <*> traverse fun stuff
instance Applicative Maybe where
return a = Just a
Nothing <*> _ = Nothing
Just f <*> fa = f <$> fa
infixr 2 _<|>_
class Alternative (m : U U) where
_<|>_ : {0 a} m a m a m a
instance Alternative Maybe where
Nothing <|> x = x
Just x <|> _ = Just x
-- Semigroup
infixl 8 _<+>_
class Semigroup a where
_<+>_ : a a a
infixl 7 _+_
class Add a where
_+_ : a a a
infixl 8 _*_ _/_
class Mul a where
_*_ : a a a
class Div a where
_/_ : a a a
instance Add Nat where
Z + m = m
S n + m = S (n + m)
instance Mul Nat where
Z * _ = Z
S n * m = m + n * m
pfunc mod : Int Int Int := `(a,b) => a % b`
infixl 7 _-_
class Sub a where
_-_ : a a a
instance Sub Nat where
Z - m = Z
n - Z = n
S n - S m = n - m
infixr 7 _++_
class Concat a where
_++_ : a a a
pfunc addString : String String String := `(x,y) => x + y`
instance Concat String where
_++_ = addString
pfunc jsEq uses (True False) : a. a a Bool := `(_, a, b) => a == b ? Prelude_True : Prelude_False`
pfunc jsLT uses (True False) : a. a a Bool := `(_, a, b) => a < b ? Prelude_True : Prelude_False`
pfunc jsShow : a . a String := `(_,a) => ''+a`
instance Eq Int where
a == b = jsEq a b
instance Eq String where
a == b = jsEq a b
instance Eq Char where
a == b = jsEq a b
ptype Array : U U
pfunc listToArray : a. List a Array a := `
(a, l) => {
let rval = []
while (l.tag !== 'Nil' && l.tag) {
rval.push(l.h1)
l = l.h2
}
return rval
}
`
pfunc alen : a. Array a Int := `(a,arr) => arr.length`
pfunc aget : a. Array a Int a := `(a, arr, ix) => arr[ix]`
pfunc aempty : a. Unit Array a := `() => []`
pfunc arrayToList uses (Nil _::_) : a. Array a List a := `(a,arr) => {
let rval = Prelude_Nil()
for (let i = arr.length - 1;i >= 0; i--) {
rval = Prelude__$3A$3A_(arr[i], rval)
}
return rval
}`
-- for now I'll run this in JS
pfunc lines uses (arrayToList) : String List String := `(s) => Prelude_arrayToList(null,s.split('\n'))`
pfunc p_strHead : (s : String) Char := `(s) => s[0]`
pfunc p_strTail : (s : String) String := `(s) => s[0]`
pfunc trim : String String := `s => s.trim()`
pfunc split uses (Nil _::_) : String String List String := `(s, by) => {
let parts = s.split(by)
let rval = Prelude_Nil()
parts.reverse()
parts.forEach(p => { rval = Prelude__$3A$3A_(p, rval) })
return rval
}`
pfunc slen : String Int := `s => s.length`
pfunc sindex : String Int Char := `(s,i) => s[i]`
pfunc natToInt : Nat Int := `(n) => n`
pfunc intToNat : Int Nat := `(n) => n>0?n:0`
pfunc fastConcat uses (listToArray) : List String String := `(xs) => Prelude_listToArray(null, xs).join('')`
pfunc replicate uses (natToInt) : Nat Char String := `(n,c) => c.repeat(Prelude_natToInt(n))`
-- TODO this should be replicate and the chars thing should have a different name
replicate' : a. Nat a List a
replicate' {a} n x = go n Nil
where
go : Nat List a List a
go Z xs = xs
go (S k) xs = go k (x :: xs)
-- I don't want to use an empty type because it would be a proof of void
ptype World
data IORes a = MkIORes a World
IO : U U
IO a = World IORes a
instance Monad IO where
bind ma mab = \ w => case ma w of
MkIORes a w => mab a w
pure = MkIORes
bindList : a b. List a (a List b) List b
instance a. Concat (List a) where
Nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
instance Monad List where
pure a = a :: Nil
bind Nil amb = Nil
bind (x :: xs) amb = amb x ++ bind xs amb
-- This is traverse, but we haven't defined Traversable yet
mapA : m. {{Applicative m}} {0 a b} (a m b) List a m (List b)
mapA f Nil = return Nil
mapA f (x :: xs) = return _::_ <*> f x <*> mapA f xs
mapM : m. {{Monad m}} {0 a b} (a m b) List a m (List b)
mapM f Nil = pure Nil
mapM f (x :: xs) = do
b <- f x
bs <- mapM f xs
pure (b :: bs)
class HasIO (m : U U) where
liftIO : a. IO a m a
instance HasIO IO where
liftIO a = a
pfunc primPutStrLn uses (MkIORes MkUnit) : String IO Unit := `(s) => (w) => {
console.log(s)
return Prelude_MkIORes(Prelude_MkUnit,w)
}`
putStrLn : io. {{HasIO io}} String io Unit
putStrLn s = liftIO (primPutStrLn s)
pfunc showInt : Int String := `(i) => String(i)`
class Show a where
show : a String
instance Show String where
show a = a
instance Show Int where
show = showInt
instance Show Bool where
show True = "true"
show False = "false"
pfunc ord : Char Int := `(c) => c.charCodeAt(0)`
pfunc chr : Int Char := `(c) => String.fromCharCode(c)`
pfunc unpack uses (Nil _::_) : String List Char
:= `(s) => {
let acc = Prelude_Nil()
for (let i = s.length - 1; 0 <= i; i--) acc = Prelude__$3A$3A_(s[i], acc)
return acc
}`
pfunc pack : List Char String := `(cs) => {
let rval = ''
while (cs.tag === '_::_' || cs.tag === 1) {
rval += cs.h1
cs = cs.h2
}
return rval
}
`
pfunc debugStr uses (natToInt listToArray) : a. a String := `(_, obj) => {
const go = (obj) => {
if (obj === null) return "_"
if (typeof obj == 'bigint') return ''+obj
if (obj.tag === '_,_') {
let rval = '('
while (obj?.tag === '_,_') {
rval += go(obj.h2) + ', '
obj = obj.h3
}
return rval + go(obj) + ')'
}
if (obj?.tag === '_::_' || obj?.tag === 'Nil') {
let stuff = Prelude_listToArray(null,obj)
return '['+(stuff.map(go).join(', '))+']'
}
if (obj instanceof Array) {
return 'io['+(obj.map(go).join(', '))+']'
}
if (obj?.tag === 'S' || obj?.tag === 'Z') {
return ''+Prelude_natToInt(obj)
} else if (obj?.tag) {
let rval = '('+obj.tag
for(let i=0;;i++) {
let key = 'h'+i
if (!(key in obj)) break
rval += ' ' + go(obj[key])
}
return rval+')'
} else {
return JSON.stringify(obj)
}
}
return go(obj)
}`
debugLog : a. a IO Unit
debugLog a = putStrLn (debugStr a)
pfunc stringToInt : String Int := `(s) => {
let rval = Number(s)
if (isNaN(rval)) throw new Error(s + " is NaN")
return rval
}`
-- TODO - add Foldable
foldl : A B. (B A B) B List A B
foldl f acc Nil = acc
foldl f acc (x :: xs) = foldl f (f acc x) xs
foldr : a b. (a b b) b List a b
foldr f b Nil = b
foldr f b (x :: xs) = f x (foldr f b xs)
infixl 9 _∘_
_∘_ : A B C. (B C) (A B) A C
(f g) x = f (g x)
pfunc addInt : Int Int Int := `(x,y) => x + y`
pfunc mulInt : Int Int Int := `(x,y) => x * y`
pfunc divInt : Int Int Int := `(x,y) => x / y | 0`
pfunc subInt : Int Int Int := `(x,y) => x - y`
pfunc ltInt uses (True False) : Int Int Bool := `(x,y) => x < y ? Prelude_True : Prelude_False`
instance Mul Int where
x * y = mulInt x y
instance Add Int where
x + y = addInt x y
instance Sub Int where
x - y = subInt x y
instance Div Int where
x / y = divInt x y
printLn : m. {{HasIO m}} {0 a : U} {{Show a}} a m Unit
printLn a = putStrLn (show a)
-- opaque JSObject
ptype JSObject
-- Like Idris1, but not idris2, we need {a} to put a in scope.
span : a. (a Bool) List a List a × List a
span {a} f xs = go xs Nil
where
go : List a List a List a × List a
go Nil left = (reverse left, Nil)
go (x :: xs) left = if f x
then go xs (x :: left)
else (reverse left, x :: xs)
instance Show Nat where
show n = show (natToInt n)
enumerate : a. List a List (Nat × a)
enumerate {a} xs = go Z xs
where
go : Nat List a List (Nat × a)
go k Nil = Nil
go k (x :: xs) = (k,x) :: go (S k) xs
filter : a. (a Bool) List a List a
filter {a} pred xs = go xs Lin
where
go : List a SnocList a List a
go Nil acc = acc <>> Nil
go (x :: xs) acc = if pred x then go xs (acc :< x) else go xs acc
drop : a. Nat List a List a
drop _ Nil = Nil
drop Z xs = xs
drop (S k) (x :: xs) = drop k xs
take : a. Nat List a List a
take {a} n xs = go n xs Lin
where
go : Nat List a SnocList a List a
go (S k) (x :: xs) acc = go k xs (acc :< x)
go _ _ acc = acc <>> Nil
getAt : a. Nat List a Maybe a
getAt _ Nil = Nothing
getAt Z (x :: xs) = Just x
getAt (S k) (x :: xs) = getAt k xs
splitOn : a. {{Eq a}} a List a List (List a)
splitOn {a} v xs = go Nil xs
where
go : List a List a List (List a)
go acc Nil = reverse acc :: Nil
go acc (x :: xs) = if x == v
then reverse acc :: go Nil xs
else go (x :: acc) xs
class Inhabited a where
default : a
instance a. Inhabited (List a) where
default = Nil
getAt! : a. {{Inhabited a}} Nat List a a
getAt! _ Nil = default
getAt! Z (x :: xs) = x
getAt! (S k) (x :: xs) = getAt! k xs
instance a. Applicative (Either a) where
return b = Right b
Right x <*> Right y = Right (x y)
Left x <*> _ = Left x
Right x <*> Left y = Left y
instance a. Monad (Either a) where
pure x = Right x
bind (Right x) mab = mab x
bind (Left x) mab = Left x
instance Monad Maybe where
pure x = Just x
bind Nothing mab = Nothing
bind (Just x) mab = mab x
elem : a. {{Eq a}} a List a Bool
elem v Nil = False
elem v (x :: xs) = if v == x then True else elem v xs
-- TODO no empty value on my `Add`, I need a group..
-- sum : ∀ a. {{Add a}} → List a → a
-- sum xs = foldl _+_
pfunc trace uses (debugStr) : a. String a a := `(_, msg, a) => { console.log(msg,Prelude_debugStr(_,a)); return a }`
mapMaybe : a b. (a Maybe b) List a List b
mapMaybe {a} {b} f xs = go Lin xs
where
go : SnocList b List a List b
go acc Nil = acc <>> Nil
go acc (x :: xs) = case f x of
Just y => go (acc :< y) xs
Nothing => go acc xs
zip : a b. List a List b List (a × b)
zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys
zip _ _ = Nil
-- TODO add double literals
ptype Double
pfunc intToDouble : Int Double := `(x) => x`
pfunc doubleToInt : Double Int := `(x) => x`
pfunc addDouble : Double Double Double := `(x,y) => x + y`
pfunc subDouble : Double Double Double := `(x,y) => x - y`
pfunc mulDouble : Double Double Double := `(x,y) => x * y`
pfunc divDouble : Double Double Double := `(x,y) => x / y`
pfunc sqrtDouble : Double Double := `(x) => Math.sqrt(x)`
pfunc ceilDouble : Double Double := `(x) => Math.ceil(x)`
instance Add Double where x + y = addDouble x y
instance Sub Double where x - y = subDouble x y
instance Mul Double where x * y = mulDouble x y
instance Div Double where x / y = divDouble x y
ptype IOArray : U U
pfunc newArray uses (MkIORes) : a. Int a IO (IOArray a) :=
`(_, n, v) => (w) => Prelude_MkIORes(Prelude_Array(n).fill(v),w)`
pfunc arrayGet : a. IOArray a Int IO a := `(_, arr, ix) => w => Prelude_MkIORes(arr[ix], w)`
pfunc arraySet uses (MkIORes MkUnit) : a. IOArray a Int a IO Unit := `(_, arr, ix, v) => w => {
arr[ix] = v
return Prelude_MkIORes(Prelude_MkUnit, w)
}`
pfunc arraySize uses (MkIORes) : a. IOArray a IO Int := `(_, arr) => w => Prelude_MkIORes(arr.length, w)`
pfunc ioArrayToList uses (Nil _::_ MkIORes) : a. IOArray a IO (List a) := `(a,arr) => w => {
let rval = Prelude_Nil()
for (let i = arr.length - 1;i >= 0; i--) {
rval = Prelude__$3A$3A_(arr[i], rval)
}
return Prelude_MkIORes(rval, w)
}`
pfunc listToIOArray uses (MkIORes) : a. List a IO (Array a) := `(a,list) => w => {
let rval = []
while (list.tag === '_::_' || list.tag === 1) {
rval.push(list.h1)
list = list.h2
}
return Prelude_MkIORes(rval,w)
}`
class Cast a b where
cast : a b
instance Cast Nat Int where
cast = natToInt
instance Cast Int Double where
cast = intToDouble
instance Applicative IO where
return a = \ w => MkIORes a w
f <*> a = \ w =>
let (MkIORes f w) = f w in
let (MkIORes a w) = a w in
MkIORes (f a) w
class Bifunctor (f : U U U) where
bimap : a b c d. (a c) (b d) f a b f c d
mapFst : a b c f. {{Bifunctor f}} (a c) f a b f c b
mapFst f ab = bimap f id ab
mapSnd : a b c f. {{Bifunctor f}} (b c) f a b f a c
mapSnd f ab = bimap id f ab
isNothing : a. Maybe a Bool
isNothing Nothing = True
isNothing _ = False
instance Bifunctor _×_ where
bimap f g (a,b) = (f a, g b)
instance Functor IO where
map f a = bind a $ \ a => pure (f a)
uncurry : a b c. (a b c) (a × b) c
uncurry f (a,b) = f a b
-- TODO Idris has a tail recursive version of this
instance Applicative List where
return a = a :: Nil
Nil <*> _ = Nil
fs <*> ys = join $ map (\ f => map f ys) fs
tail : a. List a List a
tail Nil = Nil
tail (x :: xs) = xs
data Ordering = LT | EQ | GT
instance Eq Ordering where
LT == LT = True
EQ == EQ = True
GT == GT = True
_ == _ = False
pfunc jsCompare uses (EQ LT GT) : a. a a Ordering := `(_, a, b) => a == b ? Prelude_EQ : a < b ? Prelude_LT : Prelude_GT`
infixl 6 _<_ _<=_ _>_
class Ord a where
compare : a a Ordering
_<_ : a. {{Ord a}} a a Bool
a < b = compare a b == LT
_<=_ : a. {{Ord a}} a a Bool
a <= b = compare a b /= GT
_>_ : a. {{Ord a}} a a Bool
a > b = compare a b == GT
instance Ord Nat where
compare Z Z = EQ
compare _ Z = GT
compare Z (S _) = LT
compare (S n) (S m) = compare n m
instance Ord Int where
compare a b = jsCompare a b
instance Ord Char where
compare a b = jsCompare a b
flip : a b c. (a b c) (b a c)
flip f b a = f a b
partition : a. (a Bool) List a List a × List a
partition {a} pred xs = go xs Nil Nil
where
go : List a List a List a List a × List a
go Nil as bs = (as, bs)
go (x :: xs) as bs = if pred x
then go xs (x :: as) bs
else go xs as (x :: bs)
-- probably not super efficient, but it works
qsort : a. (a a Bool) List a List a
qsort lt Nil = Nil
qsort lt (x :: xs) = qsort lt (filter (λ y => not $ lt x y) xs) ++ x :: qsort lt (filter (lt x) xs)
ordNub : a. {{Eq a}} {{Ord a}} List a List a
ordNub {a} {{ordA}} xs = go $ qsort _<_ xs
where
go : List a List a
go (a :: b :: xs) = if a == b then go (a :: xs) else a :: go (b :: xs)
go t = t
nub : a. {{Eq a}} List a List a
nub Nil = Nil
nub (x :: xs) = if elem x xs then nub xs else x :: nub xs
ite : a. Bool a a a
ite c t e = if c then t else e
instance Ord String where
compare a b = jsCompare a b
instance Cast Int Nat where
cast n = intToNat n
instance Show Char where
show c = jsShow c
swap : a b. a × b b × a
swap (a,b) = (b,a)
instance a b. {{Eq a}} {{Eq b}} Eq (a × b) where
(a,b) == (c,d) = a == c && b == d
instance a b. {{Ord a}} {{Ord b}} Ord (a × b) where
compare (a,b) (c,d) = case compare a c of
EQ => compare b d
res => res
instance Eq Bool where
True == x = x
False == False = True
_ == _ = False
instance a. {{Eq a}} Eq (List a) where
Nil == Nil = True
(x :: xs) == (y :: ys) = if x == y then xs == ys else False
_ == _ = False
find : a. (a Bool) List a Maybe a
find f Nil = Nothing
find f (x :: xs) = if f x then Just x else find f xs
-- TODO this would be faster, but less pure as a primitive
-- fastConcat might be a good compromise
joinBy : String List String String
joinBy _ Nil = ""
joinBy _ (x :: Nil) = x
joinBy s (x :: y :: xs) = joinBy s ((x ++ s ++ y) :: xs)
snoc : a. List a a List a
snoc xs x = xs ++ (x :: Nil)
instance a b. {{Show a}} {{Show b}} Show (a × b) where
show (a,b) = "(" ++ show a ++ ", " ++ show b ++ ")"
instance a. {{Show a}} Show (List a) where
show xs = joinBy ", " $ map show xs
-- For now, I'm not having the compiler do this automatically
Lazy : U U
Lazy a = Unit a
force : a. Lazy a a
force f = f MkUnit
-- unlike Idris, user will have to write \ _ => ...
when : f. {{Applicative f}} Bool Lazy (f Unit) f Unit
when b fa = if b then force fa else return MkUnit
unless : f. {{Applicative f}} Bool Lazy (f Unit) f Unit
unless b fa = when (not b) fa
instance a. {{Ord a}} Ord (List a) where
compare Nil Nil = EQ
compare Nil ys = LT
compare xs Nil = GT
compare (x :: xs) (y :: ys) = case compare x y of
EQ => compare xs ys
c => c
isSpace : Char Bool
isSpace ' ' = True
isSpace '\n' = True
isSpace _ = False
isDigit : Char Bool
isDigit '0' = True
isDigit '1' = True
isDigit '2' = True
isDigit '3' = True
isDigit '4' = True
isDigit '5' = True
isDigit '6' = True
isDigit '7' = True
isDigit '8' = True
isDigit '9' = True
isDigit _ = False
isUpper : Char Bool
isUpper c = let o = ord c in 64 < o && o < 91
isAlphaNum : Char Bool
isAlphaNum c = let o = ord c in
64 < o && o < 91 ||
47 < o && o < 58 ||
96 < o && o < 123
ignore : f a. {{Functor f}} f a f Unit
ignore = map (const MkUnit)
instance a. {{Show a}} Show (Maybe a) where
show Nothing = "Nothing"
show (Just a) = "Just {show a}"
pfunc isPrefixOf uses (True False): String String Bool := `(pfx, s) => s.startsWith(pfx) ? Prelude_True : Prelude_False`
pfunc isSuffixOf uses (True False): String String Bool := `(pfx, s) => s.endsWith(pfx) ? Prelude_True : Prelude_False`
pfunc strIndex : String Int Char := `(s, ix) => s[ix]`
instance a. {{Show a}} Show (SnocList a) where
show xs = show (xs <>> Nil)
getAt' : a. Int List a Maybe a
getAt' i xs = getAt (cast i) xs
length' : a. List a Int
length' xs = go xs 0
where
go : a. List a Int Int
go Nil acc = acc
go (x :: xs) acc = go xs (acc + 1)
unlines : List String String
unlines lines = joinBy "\n" lines
-- TODO inherit Semigroup
class Monoid a where
neutral : a
findIndex' : a. (a Bool) List a Maybe Int
findIndex' {a} pred xs = go xs 0
where
go : List a Int Maybe Int
go Nil ix = Nothing
go (x :: xs) ix = if pred x then Just ix else go xs (ix + 1)
pfunc fatalError : a. String a := `(_, msg) => { throw new Error(msg) }`
foldlM : m a e. {{Monad m}} (a e m a) a List e m a
foldlM f a xs = foldl (\ ma b => ma >>= flip f b) (pure a) xs