Files
newt/src/Lib/ProcessDecl.idr

188 lines
6.2 KiB
Idris

module Lib.ProcessDecl
import Data.IORef
import Data.String
import Data.Vect
import Lib.Elab
import Lib.Parser
import Lib.Syntax
import Lib.TopContext
import Lib.Eval
import Lib.Types
import Lib.Util
-- This is a crude first pass
-- TODO consider ctx
findMatches : Val -> List TopEntry -> M (List Tm)
findMatches ty [] = pure []
findMatches ty ((MkEntry name type def@(Fn t)) :: xs) = do
top <- get
let ctx = mkCtx top.metas (getFC ty)
-- FIXME we're restoring state, but the INFO logs have already been emitted
-- Also redo this whole thing to run during elab, recheck constraints, etc.
mc <- readIORef top.metas
catchError {e=Error} (do
-- TODO sort out the FC here
let fc = getFC ty
tm <- check (mkCtx top.metas fc) (RVar fc name) ty
debug "Found \{pprint [] tm} for \{show ty}"
(tm ::) <$> findMatches ty xs)
(\ _ => do
writeIORef top.metas mc
debug "No match \{show ty} \{pprint [] type}"
findMatches ty xs)
findMatches ty (y :: xs) = findMatches ty xs
getArity : Tm -> Nat
getArity (Pi x str icit t u) = S (getArity u)
-- Ref or App (of type constructor) are valid
getArity _ = Z
-- Can metas live in context for now?
-- We'll have to be able to add them, which might put gamma in a ref
||| collectDecl collects multiple Def for one function into one
export
collectDecl : List Decl -> List Decl
collectDecl [] = []
collectDecl ((Def fc nm cl) :: rest@(Def _ nm' cl' :: xs)) =
if nm == nm' then collectDecl (Def fc nm (cl ++ cl') :: xs)
else (Def fc nm cl :: collectDecl rest)
collectDecl (x :: xs) = x :: collectDecl xs
-- Makes the arg for `solve` when we solve an auto
makeSpine : Nat -> Vect k BD -> SnocList Val
makeSpine k [] = [<]
makeSpine (S k) (Defined :: xs) = makeSpine k xs
makeSpine (S k) (Bound :: xs) = makeSpine k xs :< VVar emptyFC k [<]
makeSpine 0 xs = ?fixme
export
processDecl : Decl -> M ()
-- REVIEW I supposed I could have updated top here instead of the dance with the parser...
processDecl (PMixFix{}) = pure ()
processDecl (TypeSig fc names tm) = do
top <- get
for_ names $ \nm => do
let Nothing := lookup nm top
| _ => error fc "\{show nm} is already defined"
pure ()
putStrLn "-----"
putStrLn "TypeSig \{unwords names} : \{show tm}"
ty <- check (mkCtx top.metas fc) tm (VU fc)
putStrLn "got \{pprint [] ty}"
-- I was doing this previously, but I don't want to over-expand VRefs
-- ty' <- nf [] ty
-- putStrLn "nf \{pprint [] ty'}"
for_ names $ \nm => modify $ setDef nm ty Axiom
processDecl (PType fc nm ty) = do
top <- get
ty' <- check (mkCtx top.metas fc) (maybe (RU fc) id ty) (VU fc)
modify $ setDef nm ty' PrimTCon
processDecl (PFunc fc nm ty src) = do
top <- get
ty <- check (mkCtx top.metas fc) ty (VU fc)
ty' <- nf [] ty
putStrLn "pfunc \{nm} : \{pprint [] ty'} := \{show src}"
modify $ setDef nm ty' (PrimFn src)
processDecl (Def fc nm clauses) = do
putStrLn "-----"
putStrLn "def \{show nm}"
top <- get
mc <- readIORef top.metas
let mstart = length mc.metas
let Just entry = lookup nm top
| Nothing => throwError $ E fc "skip def \{nm} without Decl"
let (MkEntry name ty Axiom) := entry
| _ => throwError $ E fc "\{nm} already defined"
putStrLn "check \{nm} ... at \{pprint [] ty}"
vty <- eval empty CBN ty
putStrLn "vty is \{show vty}"
-- I can take LHS apart syntactically or elaborate it with an infer
clauses' <- traverse (makeClause top) clauses
tm <- buildTree (mkCtx top.metas fc) (MkProb clauses' vty)
putStrLn "Ok \{pprint [] tm}"
mc <- readIORef top.metas
let mlen = length mc.metas `minus` mstart
for_ (take mlen mc.metas) $ \case
(Unsolved fc k ctx ty AutoSolve) => do
debug "auto solving \{show k} : \{show ty}"
-- we want the context here too.
[tm] <- findMatches ty top.defs
| res => error fc "Failed to solve \{show ty}, matches: \{show $ map (pprint []) res}"
val <- eval ctx.env CBN tm
let sp = makeSpine ctx.lvl ctx.bds
solve ctx ctx.lvl k sp val
pure ()
_ => pure ()
tm' <- zonk top 0 [] tm
putStrLn "NF \{pprint[] tm'}"
mc <- readIORef top.metas
-- for_ (take mlen mc.metas) $ \case
for_ (mc.metas) $ \case
(Solved k x) => pure ()
(Unsolved (l,c) k ctx ty User) => do
-- TODO print here instead of during Elab
pure ()
(Unsolved (l,c) k ctx ty kind) => do
tm <- quote ctx.lvl !(forceMeta ty)
-- Now that we're collecting errors, maybe we simply check at the end
addError $ E (l,c) "Unsolved meta \{show k} \{show kind} type \{pprint (names ctx) tm}"
debug "Add def \{nm} \{pprint [] tm'} : \{pprint [] ty}"
modify $ setDef nm ty (Fn tm')
processDecl (DCheck fc tm ty) = do
top <- get
putStrLn "check \{show tm} at \{show ty}"
ty' <- check (mkCtx top.metas fc) tm (VU fc)
putStrLn "got type \{pprint [] ty'}"
vty <- eval [] CBN ty'
res <- check (mkCtx top.metas fc) ty vty
putStrLn "got \{pprint [] res}"
norm <- nf [] res
putStrLn "norm \{pprint [] norm}"
putStrLn "NF "
processDecl (Data fc nm ty cons) = do
top <- get
tyty <- check (mkCtx top.metas fc) ty (VU fc)
modify $ setDef nm tyty Axiom
cnames <- for cons $ \x => case x of
(TypeSig fc names tm) => do
dty <- check (mkCtx top.metas fc) tm (VU fc)
debug "dty \{show names} is \{pprint [] dty}"
-- We only check that codomain uses the right type constructor
-- We know it's in U because it's part of a checked Pi type
let (codomain, tele) = splitTele dty
-- for printing
let tnames = reverse $ map (\(MkBind _ nm _ _) => nm) tele
let (Ref _ hn _, args) := funArgs codomain
| (tm, _) => error (getFC tm) "expected \{nm} got \{pprint tnames tm}"
when (hn /= nm) $
error (getFC codomain) "Constructor codomain is \{pprint tnames codomain} rather than \{nm}"
for_ names $ \ nm' => modify $ setDef nm' dty (DCon (getArity dty) nm)
pure names
_ => throwError $ E (0,0) "expected constructor declaration"
putStrLn "setDef \{nm} TCon \{show $ join cnames}"
modify $ setDef nm tyty (TCon (join cnames))
pure ()
where
checkDeclType : Tm -> M ()
checkDeclType (U _) = pure ()
checkDeclType (Pi _ str icit t u) = checkDeclType u
checkDeclType _ = error fc "data type doesn't return U"