Files
newt/newt/Prelude.newt
2024-12-09 16:53:32 -08:00

722 lines
17 KiB
Agda
Raw Blame History

module Prelude
id : a. a a
id x = x
the : (a : U) a a
the _ a = a
data Bool : U where
True False : Bool
not : Bool Bool
not True = False
not False = True
-- In Idris, this is lazy in the second arg, we're not doing
-- magic laziness for now, it's messy
infixr 4 _||_
_||_ : Bool Bool Bool
True || _ = True
False || b = b
infixr 5 _&&_
_&&_ : Bool Bool Bool
False && b = False
True && b = b
infixl 6 _==_
class Eq a where
_==_ : a a Bool
infixl 6 _/=_
_/=_ : a. {{Eq a}} a a Bool
a /= b = not (a == b)
data Nat : U where
Z : Nat
S : Nat -> Nat
pred : Nat Nat
pred Z = Z
pred (S k) = k
instance Eq Nat where
Z == Z = True
S n == S m = n == m
x == y = False
data Maybe : U -> U where
Just : a. a -> Maybe a
Nothing : a. Maybe a
fromMaybe : a. a Maybe a a
fromMaybe a Nothing = a
fromMaybe _ (Just a) = a
data Either : U -> U -> U where
Left : {0 a b : U} -> a -> Either a b
Right : {0 a b : U} -> b -> Either a b
infixr 7 _::_
data List : U -> U where
Nil : A. List A
_::_ : A. A List A List A
length : a. List a Nat
length Nil = Z
length (x :: xs) = S (length xs)
infixl 7 _:<_
data SnocList : U U where
Lin : A. SnocList A
_:<_ : A. SnocList A A SnocList A
-- 'chips'
infixr 6 _<>>_
_<>>_ : a. SnocList a List a List a
Lin <>> ys = ys
(xs :< x) <>> ys = xs <>> x :: ys
-- This is now handled by the parser, and LHS becomes `f a`.
-- infixr 0 _$_
-- _$_ : ∀ a b. (a -> b) -> a -> b
-- f $ a = f a
infixr 8 _×_
infixr 2 _,_
data _×_ : U U U where
_,_ : A B. A B A × B
fst : a b. a × b a
fst (a,b) = a
snd : a b. a × b b
snd (a,b) = b
-- Monad
class Monad (m : U U) where
bind : {0 a b} m a (a m b) m b
pure : {0 a} a m a
infixl 1 _>>=_ _>>_
_>>=_ : m a b. {{Monad m}} -> (m a) -> (a -> m b) -> m b
ma >>= amb = bind ma amb
_>>_ : m a b. {{Monad m}} -> m a -> m b -> m b
ma >> mb = ma >>= (\ _ => mb)
join : m a. {{Monad m}} m (m a) m a
join mma = mma >>= id
-- Equality
infixl 1 _≡_
data _≡_ : {A : U} -> A -> A -> U where
Refl : {A : U} -> {a : A} -> a a
replace : {A : U} {a b : A} -> (P : A -> U) -> a b -> P a -> P b
replace p Refl x = x
cong : {A B : U} {a b : A} -> (f : A -> B) -> a b -> f a f b
sym : {A : U} -> {a b : A} -> a b -> b a
sym Refl = Refl
-- Functor
class Functor (m : U U) where
map : {0 a b} (a b) m a m b
infixr 4 _<$>_
_<$>_ : {0 f} {{Functor f}} {0 a b} (a b) f a f b
f <$> ma = map f ma
instance Functor Maybe where
map f Nothing = Nothing
map f (Just a) = Just (f a)
instance Functor List where
map f Nil = Nil
map f (x :: xs) = f x :: map f xs
instance Functor SnocList where
map f Lin = Lin
map f (xs :< x) = map f xs :< f x
-- TODO this probably should depend on / entail Functor
infixl 3 _<*>_
class Applicative (f : U U) where
-- appIsFunctor : Functor f
return : {0 a} a f a
_<*>_ : {0 a b} -> f (a b) f a f b
class Traversable (t : U U) where
traverse : f a b. {{Applicative f}} (a f b) t a f (t b)
instance Traversable List where
traverse f Nil = return Nil
traverse f (x :: xs) = return _::_ <*> f x <*> traverse f xs
for : {t : U U} {f : U U} {{Traversable t}} {{appf : Applicative f}} {a : U} {b : U} t a (a f b) f (t b)
for stuff fun = traverse fun stuff
instance Applicative Maybe where
return a = Just a
Nothing <*> _ = Nothing
Just f <*> fa = f <$> fa
infixr 2 _<|>_
class Alternative (m : U U) where
_<|>_ : {0 a} m a m a m a
instance Alternative Maybe where
Nothing <|> x = x
Just x <|> _ = Just x
-- Semigroup
infixl 8 _<+>_
class Semigroup a where
_<+>_ : a a a
infixl 7 _+_
class Add a where
_+_ : a a a
infixl 8 _*_ _/_
class Mul a where
_*_ : a a a
class Div a where
_/_ : a a a
instance Add Nat where
Z + m = m
S n + m = S (n + m)
instance Mul Nat where
Z * _ = Z
S n * m = m + n * m
infixl 7 _-_
class Sub a where
_-_ : a a a
instance Sub Nat where
Z - m = Z
n - Z = n
S n - S m = n - m
infixr 7 _++_
class Concat a where
_++_ : a a a
ptype String
ptype Int
ptype Char
pfunc sconcat : String String String := `(x,y) => x + y`
instance Concat String where
_++_ = sconcat
pfunc jsEq uses (True False) : a. a a Bool := `(_, a, b) => a == b ? True : False`
pfunc jsLT uses (True False) : a. a a Bool := `(_, a, b) => a < b ? True : False`
instance Eq Int where
a == b = jsEq a b
instance Eq String where
a == b = jsEq a b
instance Eq Char where
a == b = jsEq a b
data Unit : U where
MkUnit : Unit
ptype Array : U U
pfunc listToArray : {a : U} -> List a -> Array a := `
(a, l) => {
let rval = []
while (l.tag !== 'Nil') {
rval.push(l.h1)
l = l.h2
}
return rval
}
`
pfunc alen : {0 a : U} -> Array a -> Int := `(a,arr) => arr.length`
pfunc aget : {0 a : U} -> Array a -> Int -> a := `(a, arr, ix) => arr[ix]`
pfunc aempty : {0 a : U} -> Unit -> Array a := `() => []`
pfunc arrayToList uses (Nil _::_) : {0 a} Array a List a := `(a,arr) => {
let rval = Nil(a)
for (let i = arr.length - 1;i >= 0; i--) {
rval = _$3A$3A_(a, arr[i], rval)
}
return rval
}`
-- for now I'll run this in JS
pfunc lines : String List String := `(s) => arrayToList(s.split('\n'))`
pfunc p_strHead : (s : String) -> Char := `(s) => s[0]`
pfunc p_strTail : (s : String) -> String := `(s) => s[0]`
pfunc trim : String -> String := `s => s.trim()`
pfunc split uses (Nil _::_) : String -> String -> List String := `(s, by) => {
let parts = s.split(by)
let rval = Nil(String)
parts.reverse()
parts.forEach(p => { rval = _$3A$3A_(undefined, p, rval) })
return rval
}`
pfunc slen : String -> Int := `s => s.length`
pfunc sindex : String -> Int -> Char := `(s,i) => s[i]`
-- TODO represent Nat as number at runtime
pfunc natToInt : Nat -> Int := `(n) => {
let rval = 0
while (n.tag === 'S') {
n = n.h0
rval++
}
return rval
}`
pfunc intToNat uses (Z S) : Int -> Nat := `(n) => {
let rval = Z
for (;n>0;n--) rval = S(rval);
return rval;
}`
pfunc fastConcat : List String String := `(xs) => listToArray(undefined, xs).join('')`
pfunc replicate : Nat -> Char String := `(n,c) => c.repeat(natToInt(n))`
-- I don't want to use an empty type because it would be a proof of void
ptype World
data IORes : U -> U where
MkIORes : a. a -> World -> IORes a
IO : U -> U
IO a = World -> IORes a
instance Monad IO where
bind ma mab = \ w => case ma w of
MkIORes a w => mab a w
pure x = \ w => MkIORes x w
bindList : a b. List a (a List b) List b
instance a. Concat (List a) where
Nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
instance Monad List where
pure a = a :: Nil
bind Nil amb = Nil
bind (x :: xs) amb = amb x ++ bind xs amb
-- This is traverse, but we haven't defined Traversable yet
mapA : m. {{Applicative m}} {0 a b} (a m b) List a m (List b)
mapA f Nil = return Nil
mapA f (x :: xs) = return _::_ <*> f x <*> mapA f xs
mapM : m. {{Monad m}} {0 a b} (a m b) List a m (List b)
mapM f Nil = pure Nil
mapM f (x :: xs) = do
b <- f x
bs <- mapM f xs
pure (b :: bs)
class HasIO (m : U -> U) where
liftIO : a. IO a m a
instance HasIO IO where
liftIO a = a
pfunc primPutStrLn uses (MkIORes MkUnit) : String -> IO Unit := `(s) => (w) => {
console.log(s)
return MkIORes(undefined,MkUnit,w)
}`
putStrLn : io. {{HasIO io}} -> String -> io Unit
putStrLn s = liftIO (primPutStrLn s)
pfunc showInt : Int -> String := `(i) => String(i)`
class Show a where
show : a String
instance Show String where
show a = a
instance Show Int where
show = showInt
pfunc ord : Char -> Int := `(c) => c.charCodeAt(0)`
pfunc unpack uses (Nil _::_) : String -> List Char
:= `(s) => {
let acc = Nil(undefined)
for (let i = s.length - 1; 0 <= i; i--) acc = _$3A$3A_(undefined, s[i], acc)
return acc
}`
pfunc pack : List Char String := `(cs) => {
let rval = ''
while (cs.tag === '_::_') {
rval += cs.h1
cs = cs.h2
}
return rval
}
`
pfunc debugStr uses (natToInt listToArray) : a. a String := `(_, obj) => {
const go = (obj) => {
if (obj === undefined) return "_"
if (obj.tag === '_,_') {
let rval = '('
while (obj?.tag === '_,_') {
rval += go(obj.h2) + ', '
obj = obj.h3
}
return rval + go(obj) + ')'
}
if (obj?.tag === '_::_' || obj?.tag === 'Nil') {
let stuff = listToArray(undefined,obj)
return '['+(stuff.map(go).join(', '))+']'
}
if (obj instanceof Array) {
return 'io['+(obj.map(go).join(', '))+']'
}
if (obj?.tag === 'S' || obj?.tag === 'Z') {
return ''+natToInt(obj)
} else if (obj?.tag) {
let rval = '('+obj.tag
for(let i=0;;i++) {
let key = 'h'+i
if (!(key in obj)) break
rval += ' ' + go(obj[key])
}
return rval+')'
} else {
return JSON.stringify(obj)
}
}
return go(obj)
}`
debugLog : a. a IO Unit
debugLog a = putStrLn (debugStr a)
pfunc stringToInt : String Int := `(s) => {
let rval = Number(s)
if (isNaN(rval)) throw new Error(s + " is NaN")
return rval
}`
foldl : A B. (B -> A -> B) -> B -> List A -> B
foldl f acc Nil = acc
foldl f acc (x :: xs) = foldl f (f acc x) xs
infixl 9 _∘_
_∘_ : {A B C : U} -> (B -> C) -> (A -> B) -> A -> C
(f g) x = f (g x)
pfunc addInt : Int Int Int := `(x,y) => x + y`
pfunc mulInt : Int Int Int := `(x,y) => x * y`
pfunc subInt : Int Int Int := `(x,y) => x - y`
pfunc ltInt uses (True False) : Int Int Bool := `(x,y) => x < y ? True : False`
instance Mul Int where
x * y = mulInt x y
instance Add Int where
x + y = addInt x y
instance Sub Int where
x - y = subInt x y
printLn : {m} {{HasIO m}} {a} {{Show a}} a m Unit
printLn a = putStrLn (show a)
-- opaque JSObject
ptype JSObject
reverse : a. List a List a
reverse {a} = go Nil
where
go : List a List a List a
go acc Nil = acc
go acc (x :: xs) = go (x :: acc) xs
-- Like Idris1, but not idris2, we need {a} to put a in scope.
span : a. (a -> Bool) -> List a -> List a × List a
span {a} f xs = go xs Nil
where
go : List a -> List a -> List a × List a
go Nil left = (reverse left, Nil)
go (x :: xs) left = if f x
then go xs (x :: left)
else (reverse left, x :: xs)
instance Show Nat where
show n = show (natToInt n)
enumerate : a. List a List (Nat × a)
enumerate {a} xs = go Z xs
where
go : Nat List a List (Nat × a)
go k Nil = Nil
go k (x :: xs) = (k,x) :: go (S k) xs
filter : a. (a Bool) List a List a
filter pred Nil = Nil
filter pred (x :: xs) = if pred x then x :: filter pred xs else filter pred xs
drop : a. Nat -> List a -> List a
drop _ Nil = Nil
drop Z xs = xs
drop (S k) (x :: xs) = drop k xs
take : a. Nat -> List a -> List a
take Z xs = Nil
take _ Nil = Nil
take (S k) (x :: xs) = x :: take k xs
getAt : a. Nat List a Maybe a
getAt _ Nil = Nothing
getAt Z (x :: xs) = Just x
getAt (S k) (x :: xs) = getAt k xs
splitOn : a. {{Eq a}} a List a List (List a)
splitOn {a} v xs = go Nil xs
where
go : List a List a List (List a)
go acc Nil = reverse acc :: Nil
go acc (x :: xs) = if x == v
then reverse acc :: go Nil xs
else go (x :: acc) xs
class Inhabited a where
default : a
instance a. Inhabited (List a) where
default = Nil
getAt! : a. {{Inhabited a}} Nat List a a
getAt! _ Nil = default
getAt! Z (x :: xs) = x
getAt! (S k) (x :: xs) = getAt! k xs
instance a. Applicative (Either a) where
return b = Right b
Right x <*> Right y = Right (x y)
Left x <*> _ = Left x
Right x <*> Left y = Left y
instance a. Monad (Either a) where
pure x = Right x
bind (Right x) mab = mab x
bind (Left x) mab = Left x
instance Monad Maybe where
pure x = Just x
bind Nothing mab = Nothing
bind (Just x) mab = mab x
elem : a. {{Eq a}} a List a Bool
elem v Nil = False
elem v (x :: xs) = if v == x then True else elem v xs
-- TODO no empty value on my `Add`, I need a group..
-- sum : ∀ a. {{Add a}} → List a → a
-- sum xs = foldl _+_
pfunc trace uses (debugStr) : a. String -> a -> a := `(_, msg, a) => { console.log(msg,debugStr(_,a)); return a }`
mapMaybe : a b. (a Maybe b) List a List b
mapMaybe f Nil = Nil
mapMaybe f (x :: xs) = case f x of
Just y => y :: mapMaybe f xs
Nothing => mapMaybe f xs
zip : a b. List a List b List (a × b)
zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys
zip _ _ = Nil
-- TODO add double literals
ptype Double
pfunc intToDouble : Int Double := `(x) => x`
pfunc doubleToInt : Double Int := `(x) => x`
pfunc addDouble : Double Double Double := `(x,y) => x + y`
pfunc subDouble : Double Double Double := `(x,y) => x - y`
pfunc mulDouble : Double Double Double := `(x,y) => x * y`
pfunc divDouble : Double Double Double := `(x,y) => x / y`
pfunc sqrtDouble : Double Double := `(x) => Math.sqrt(x)`
pfunc ceilDouble : Double Double := `(x) => Math.ceil(x)`
instance Add Double where x + y = addDouble x y
instance Sub Double where x - y = subDouble x y
instance Mul Double where x * y = mulDouble x y
instance Div Double where x / y = divDouble x y
ptype IOArray : U U
pfunc newArray uses (MkIORes) : a. Int a IO (IOArray a) :=
`(_, n, v) => (w) => MkIORes(undefined,Array(n).fill(v),w)`
pfunc arrayGet : a. IOArray a Int IO a := `(_, arr, ix) => w => MkIORes(undefined, arr[ix], w)`
pfunc arraySet uses (MkUnit) : a. IOArray a Int a IO Unit := `(_, arr, ix, v) => w => {
arr[ix] = v
return MkIORes(undefined, MkUnit, w)
}`
pfunc arraySize uses (MkIORes) : a. IOArray a IO Int := `(_, arr) => w => MkIORes(undefined, arr.length, w)`
pfunc ioArrayToList uses (Nil _::_ MkIORes) : {0 a} IOArray a IO (List a) := `(a,arr) => w => {
let rval = Nil(a)
for (let i = arr.length - 1;i >= 0; i--) {
rval = _$3A$3A_(a, arr[i], rval)
}
return MkIORes(undefined, rval, w)
}`
pfunc listToIOArray uses (MkIORes) : {0 a} List a IO (Array a) := `(a,list) => w => {
let rval = []
while (list.tag === '_::_') {
rval.push(list.h1)
list = list.h2
}
return MkIORes(undefined,rval,w)
}`
class Cast a b where
cast : a b
instance Cast Nat Int where
cast = natToInt
instance Cast Int Double where
cast = intToDouble
instance Applicative IO where
return a = \ w => MkIORes a w
f <*> a = \ w =>
let (MkIORes f w) = trace "fw" $ f w in
let (MkIORes a w) = trace "aw" $ a w in
MkIORes (f a) w
class Bifunctor (f : U U U) where
bimap : a b c d. (a c) (b d) f a b f c d
mapFst : a b c f. {{Bifunctor f}} (a c) f a b f c b
mapFst f ab = bimap f id ab
mapSnd : a b c f. {{Bifunctor f}} (b c) f a b f a c
mapSnd f ab = bimap id f ab
isNothing : a. Maybe a Bool
isNothing Nothing = True
isNothing _ = False
instance Bifunctor _×_ where
bimap f g (a,b) = (f a, g b)
instance Functor IO where
map f a = bind a $ \ a => pure (f a)
uncurry : a b c. (a -> b -> c) -> (a × b) -> c
uncurry f (a,b) = f a b
-- TODO Idris has a tail recursive version of this
instance Applicative List where
return a = a :: Nil
Nil <*> _ = Nil
fs <*> ys = join $ map (\ f => map f ys) fs
tail : a. List a List a
tail Nil = Nil
tail (x :: xs) = xs
--
infixl 6 _<_ _<=_
class Ord a where
-- isEq : Eq a
_<_ : a a Bool
_<=_ : a. {{Eq a}} {{Ord a}} a a Bool
a <= b = a == b || a < b
search : cl. {{cl}} -> cl
search {{x}} = x
instance Ord Nat where
-- isEq = search
_ < Z = False
Z < S _ = True
S n < S m = n < m
instance Ord Int where
-- isEq = ?
x < y = ltInt x y
instance Ord Char where
x < y = jsLT x y
-- foo : ∀ a. {{Ord a}} -> a -> Bool
-- foo a = a == a
flip : a b c. (a b c) (b a c)
flip f b a = f a b
partition : a. (a Bool) List a List a × List a
partition {a} pred xs = go xs Nil Nil
where
go : List a List a List a List a × List a
go Nil as bs = (as, bs)
go (x :: xs) as bs = if pred x
then go xs (x :: as) bs
else go xs as (x :: bs)
-- probably not super efficient, but it works
qsort : a. (a a Bool) List a List a
qsort lt Nil = Nil
qsort lt (x :: xs) = qsort lt (filter (λ y => not $ lt x y) xs) ++ x :: qsort lt (filter (lt x) xs)
ordNub : a. {{Eq a}} {{Ord a}} -> List a -> List a
ordNub {a} {{ordA}} xs = go $ qsort _<_ xs
where
go : List a List a
go (a :: b :: xs) = if a == b then go (a :: xs) else a :: go (b :: xs)
go t = t
ite : a. Bool a a a
ite c t e = if c then t else e
instance Ord String where
a < b = jsLT a b
instance Cast Int Nat where
cast n = intToNat n