630 lines
15 KiB
Agda
630 lines
15 KiB
Agda
module Prelude
|
||
|
||
id : ∀ a. a → a
|
||
id x = x
|
||
|
||
data Bool : U where
|
||
True False : Bool
|
||
|
||
not : Bool → Bool
|
||
not True = False
|
||
not False = True
|
||
|
||
-- In Idris, this is lazy in the second arg, we're not doing
|
||
-- magic laziness for now, it's messy
|
||
infixr 4 _||_
|
||
_||_ : Bool → Bool → Bool
|
||
True || _ = True
|
||
False || b = b
|
||
|
||
infixr 5 _&&_
|
||
_&&_ : Bool → Bool → Bool
|
||
False && b = False
|
||
True && b = b
|
||
|
||
infixl 6 _==_
|
||
class Eq a where
|
||
_==_ : a → a → Bool
|
||
|
||
infixl 6 _/=_
|
||
_/=_ : ∀ a. {{Eq a}} → a → a → Bool
|
||
a /= b = not (a == b)
|
||
|
||
data Nat : U where
|
||
Z : Nat
|
||
S : Nat -> Nat
|
||
|
||
pred : Nat → Nat
|
||
pred Z = Z
|
||
pred (S k) = k
|
||
|
||
instance Eq Nat where
|
||
Z == Z = True
|
||
S n == S m = n == m
|
||
x == y = False
|
||
|
||
data Maybe : U -> U where
|
||
Just : ∀ a. a -> Maybe a
|
||
Nothing : ∀ a. Maybe a
|
||
|
||
fromMaybe : ∀ a. a → Maybe a → a
|
||
fromMaybe a Nothing = a
|
||
fromMaybe _ (Just a) = a
|
||
|
||
data Either : U -> U -> U where
|
||
Left : {0 a b : U} -> a -> Either a b
|
||
Right : {0 a b : U} -> b -> Either a b
|
||
|
||
infixr 7 _::_
|
||
data List : U -> U where
|
||
Nil : ∀ A. List A
|
||
_::_ : ∀ A. A → List A → List A
|
||
|
||
length : ∀ a. List a → Nat
|
||
length Nil = Z
|
||
length (x :: xs) = S (length xs)
|
||
|
||
|
||
infixl 7 _:<_
|
||
data SnocList : U → U where
|
||
Lin : ∀ A. SnocList A
|
||
_:<_ : ∀ A. SnocList A → A → SnocList A
|
||
|
||
-- 'chips'
|
||
infixr 6 _<>>_
|
||
_<>>_ : ∀ a. SnocList a → List a → List a
|
||
Lin <>> ys = ys
|
||
(xs :< x) <>> ys = xs <>> x :: ys
|
||
|
||
-- This is now handled by the parser, and LHS becomes `f a`.
|
||
-- infixr 0 _$_
|
||
-- _$_ : ∀ a b. (a -> b) -> a -> b
|
||
-- f $ a = f a
|
||
|
||
infixr 8 _×_
|
||
infixr 2 _,_
|
||
data _×_ : U → U → U where
|
||
_,_ : ∀ A B. A → B → A × B
|
||
|
||
fst : ∀ a b. a × b → a
|
||
fst (a,b) = a
|
||
|
||
snd : ∀ a b. a × b → b
|
||
snd (a,b) = b
|
||
|
||
infixl 6 _<_ _<=_
|
||
class Ord a where
|
||
_<_ : a → a → Bool
|
||
|
||
instance Ord Nat where
|
||
_ < Z = False
|
||
Z < S _ = True
|
||
S n < S m = n < m
|
||
|
||
_<=_ : ∀ a. {{Eq a}} {{Ord a}} → a → a → Bool
|
||
a <= b = a == b || a < b
|
||
-- Monad
|
||
|
||
class Monad (m : U → U) where
|
||
bind : {0 a b} → m a → (a → m b) → m b
|
||
pure : {0 a} → a → m a
|
||
|
||
infixl 1 _>>=_ _>>_
|
||
_>>=_ : {0 m} {{Monad m}} {0 a b} -> (m a) -> (a -> m b) -> m b
|
||
ma >>= amb = bind ma amb
|
||
|
||
_>>_ : {0 m} {{Monad m}} {0 a b} -> m a -> m b -> m b
|
||
ma >> mb = ma >>= (\ _ => mb)
|
||
|
||
join : ∀ m. {{Monad m}} {0 a} → m (m a) → m a
|
||
join mma = mma >>= id
|
||
|
||
-- Equality
|
||
|
||
infixl 1 _≡_
|
||
data _≡_ : {A : U} -> A -> A -> U where
|
||
Refl : {A : U} -> {a : A} -> a ≡ a
|
||
|
||
replace : {A : U} {a b : A} -> (P : A -> U) -> a ≡ b -> P a -> P b
|
||
replace p Refl x = x
|
||
|
||
cong : {A B : U} {a b : A} -> (f : A -> B) -> a ≡ b -> f a ≡ f b
|
||
|
||
sym : {A : U} -> {a b : A} -> a ≡ b -> b ≡ a
|
||
sym Refl = Refl
|
||
|
||
-- Functor
|
||
|
||
class Functor (m : U → U) where
|
||
map : {0 a b} → (a → b) → m a → m b
|
||
|
||
infixr 4 _<$>_
|
||
_<$>_ : {0 f} {{Functor f}} {0 a b} → (a → b) → f a → f b
|
||
f <$> ma = map f ma
|
||
|
||
instance Functor Maybe where
|
||
map f Nothing = Nothing
|
||
map f (Just a) = Just (f a)
|
||
|
||
instance Functor List where
|
||
map f Nil = Nil
|
||
map f (x :: xs) = f x :: map f xs
|
||
|
||
instance Functor SnocList where
|
||
map f Lin = Lin
|
||
map f (xs :< x) = map f xs :< f x
|
||
|
||
-- TODO this probably should depend on / entail Functor
|
||
infixl 3 _<*>_
|
||
class Applicative (f : U → U) where
|
||
-- appIsFunctor : Functor f
|
||
return : {0 a} → a → f a
|
||
_<*>_ : {0 a b} -> f (a → b) → f a → f b
|
||
|
||
class Traversable (t : U → U) where
|
||
traverse : ∀ f a b. {{Applicative f}} → (a → f b) → t a → f (t b)
|
||
|
||
instance Traversable List where
|
||
traverse f Nil = return Nil
|
||
traverse f (x :: xs) = return _::_ <*> f x <*> traverse f xs
|
||
|
||
for : {t : U → U} {f : U → U} → {{Traversable t}} {{appf : Applicative f}} → {a : U} → {b : U} → t a → (a → f b) → f (t b)
|
||
for stuff fun = traverse fun stuff
|
||
|
||
instance Applicative Maybe where
|
||
return a = Just a
|
||
Nothing <*> _ = Nothing
|
||
Just f <*> fa = f <$> fa
|
||
|
||
infixr 2 _<|>_
|
||
class Alternative (m : U → U) where
|
||
_<|>_ : {0 a} → m a → m a → m a
|
||
|
||
instance Alternative Maybe where
|
||
Nothing <|> x = x
|
||
Just x <|> _ = Just x
|
||
|
||
-- Semigroup
|
||
|
||
infixl 8 _<+>_
|
||
class Semigroup a where
|
||
_<+>_ : a → a → a
|
||
|
||
infixl 7 _+_
|
||
class Add a where
|
||
_+_ : a → a → a
|
||
|
||
infixl 8 _*_ _/_
|
||
class Mul a where
|
||
_*_ : a → a → a
|
||
|
||
class Div a where
|
||
_/_ : a → a → a
|
||
|
||
instance Add Nat where
|
||
Z + m = m
|
||
S n + m = S (n + m)
|
||
|
||
instance Mul Nat where
|
||
Z * _ = Z
|
||
S n * m = m + n * m
|
||
|
||
infixl 7 _-_
|
||
class Sub a where
|
||
_-_ : a → a → a
|
||
|
||
instance Sub Nat where
|
||
Z - m = Z
|
||
n - Z = n
|
||
S n - S m = n - m
|
||
|
||
infixr 7 _++_
|
||
class Concat a where
|
||
_++_ : a → a → a
|
||
|
||
ptype String
|
||
ptype Int
|
||
ptype Char
|
||
|
||
pfunc sconcat : String → String → String := `(x,y) => x + y`
|
||
instance Concat String where
|
||
_++_ = sconcat
|
||
|
||
|
||
pfunc jsEq uses (True False) : ∀ a. a → a → Bool := `(_, a, b) => a == b ? True : False`
|
||
instance Eq Int where
|
||
a == b = jsEq a b
|
||
|
||
instance Eq String where
|
||
a == b = jsEq a b
|
||
|
||
instance Eq Char where
|
||
a == b = jsEq a b
|
||
|
||
data Unit : U where
|
||
MkUnit : Unit
|
||
|
||
ptype Array : U → U
|
||
pfunc listToArray : {a : U} -> List a -> Array a := `
|
||
(a, l) => {
|
||
let rval = []
|
||
while (l.tag !== 'Nil') {
|
||
rval.push(l.h1)
|
||
l = l.h2
|
||
}
|
||
return rval
|
||
}
|
||
`
|
||
|
||
pfunc alen : {0 a : U} -> Array a -> Int := `(a,arr) => arr.length`
|
||
pfunc aget : {0 a : U} -> Array a -> Int -> a := `(a, arr, ix) => arr[ix]`
|
||
pfunc aempty : {0 a : U} -> Unit -> Array a := `() => []`
|
||
|
||
pfunc arrayToList uses (Nil _::_) : {0 a} → Array a → List a := `(a,arr) => {
|
||
let rval = Nil(a)
|
||
for (let i = arr.length - 1;i >= 0; i--) {
|
||
rval = _$3A$3A_(a, arr[i], rval)
|
||
}
|
||
return rval
|
||
}`
|
||
|
||
|
||
|
||
-- for now I'll run this in JS
|
||
pfunc lines : String → List String := `(s) => arrayToList(s.split('\n'))`
|
||
|
||
pfunc p_strHead : (s : String) -> Char := `(s) => s[0]`
|
||
pfunc p_strTail : (s : String) -> String := `(s) => s[0]`
|
||
|
||
pfunc trim : String -> String := `s => s.trim()`
|
||
pfunc split uses (Nil _::_) : String -> String -> List String := `(s, by) => {
|
||
let parts = s.split(by)
|
||
let rval = Nil(String)
|
||
parts.reverse()
|
||
parts.forEach(p => { rval = _$3A$3A_(undefined, p, rval) })
|
||
return rval
|
||
}`
|
||
|
||
pfunc slen : String -> Int := `s => s.length`
|
||
pfunc sindex : String -> Int -> Char := `(s,i) => s[i]`
|
||
|
||
-- TODO represent Nat as number at runtime
|
||
pfunc natToInt : Nat -> Int := `(n) => {
|
||
let rval = 0
|
||
while (n.tag === 'S') {
|
||
n = n.h0
|
||
rval++
|
||
}
|
||
return rval
|
||
}`
|
||
|
||
pfunc fastConcat : List String → String := `(xs) => listToArray(undefined, xs).join('')`
|
||
pfunc replicate : Nat -> Char → String := `(n,c) => c.repeat(natToInt(n))`
|
||
|
||
-- I don't want to use an empty type because it would be a proof of void
|
||
ptype World
|
||
|
||
data IORes : U -> U where
|
||
MkIORes : {a : U} -> a -> World -> IORes a
|
||
|
||
IO : U -> U
|
||
IO a = World -> IORes a
|
||
|
||
instance Monad IO where
|
||
bind ma mab = \ w => case ma w of
|
||
MkIORes a w => mab a w
|
||
pure a = \ w => MkIORes a w
|
||
|
||
|
||
bindList : ∀ a b. List a → (a → List b) → List b
|
||
|
||
instance ∀ a. Concat (List a) where
|
||
Nil ++ ys = ys
|
||
(x :: xs) ++ ys = x :: (xs ++ ys)
|
||
|
||
instance Monad List where
|
||
pure a = a :: Nil
|
||
bind Nil amb = Nil
|
||
bind (x :: xs) amb = amb x ++ bind xs amb
|
||
|
||
|
||
|
||
-- This is traverse, but we haven't defined Traversable yet
|
||
mapA : ∀ m. {{Applicative m}} {0 a b} → (a → m b) → List a → m (List b)
|
||
mapA f Nil = return Nil
|
||
mapA f (x :: xs) = return _::_ <*> f x <*> mapA f xs
|
||
|
||
|
||
mapM : ∀ m. {{Monad m}} {0 a b} → (a → m b) → List a → m (List b)
|
||
mapM f Nil = pure Nil
|
||
mapM f (x :: xs) = do
|
||
b <- f x
|
||
bs <- mapM f xs
|
||
pure (b :: bs)
|
||
|
||
class HasIO (m : U -> U) where
|
||
liftIO : ∀ a. IO a → m a
|
||
|
||
instance HasIO IO where
|
||
liftIO a = a
|
||
|
||
pfunc debugLog uses (MkIORes MkUnit) : ∀ a. a -> IO Unit := `(_,s) => (w) => {
|
||
console.log(s)
|
||
return MkIORes(undefined,MkUnit,w)
|
||
}`
|
||
|
||
pfunc primPutStrLn uses (MkIORes MkUnit) : String -> IO Unit := `(s) => (w) => {
|
||
console.log(s)
|
||
return MkIORes(undefined,MkUnit,w)
|
||
}`
|
||
|
||
putStrLn : ∀ io. {{HasIO io}} -> String -> io Unit
|
||
putStrLn s = liftIO (primPutStrLn s)
|
||
|
||
pfunc showInt : Int -> String := `(i) => String(i)`
|
||
|
||
class Show a where
|
||
show : a → String
|
||
|
||
instance Show String where
|
||
show a = a
|
||
|
||
instance Show Int where
|
||
show = showInt
|
||
|
||
pfunc ord : Char -> Int := `(c) => c.charCodeAt(0)`
|
||
|
||
pfunc unpack : String -> List Char
|
||
:= `(s) => {
|
||
let acc = Nil(Char)
|
||
for (let i = s.length - 1; 0 <= i; i--) acc = _$3A$3A_(Char, s[i], acc)
|
||
return acc
|
||
}`
|
||
|
||
pfunc pack : List Char → String := `(cs) => {
|
||
let rval = ''
|
||
while (cs.tag === '_::_') {
|
||
rval += cs.h1
|
||
cs = cs.h2
|
||
}
|
||
|
||
return rval
|
||
}
|
||
`
|
||
|
||
pfunc debugStr uses (natToInt listToArray) : ∀ a. a → String := `(_, obj) => {
|
||
const go = (obj) => {
|
||
if (obj?.tag === '_::_' || obj?.tag === 'Nil') {
|
||
let stuff = listToArray(undefined,obj)
|
||
return '['+(stuff.map(go).join(', '))+']'
|
||
}
|
||
if (obj?.tag === 'S' || obj?.tag === 'Z') {
|
||
return ''+natToInt(obj)
|
||
} else if (obj?.tag) {
|
||
let rval = '('+obj.tag
|
||
for(let i=0;;i++) {
|
||
let key = 'h'+i
|
||
if (!(key in obj)) break
|
||
rval += ' ' + go(obj[key])
|
||
}
|
||
return rval+')'
|
||
} else {
|
||
return JSON.stringify(obj)
|
||
}
|
||
}
|
||
return go(obj)
|
||
}`
|
||
|
||
pfunc stringToInt : String → Int := `(s) => {
|
||
let rval = Number(s)
|
||
if (isNaN(rval)) throw new Error(s + " is NaN")
|
||
return rval
|
||
}`
|
||
|
||
foldl : ∀ A B. (B -> A -> B) -> B -> List A -> B
|
||
foldl f acc Nil = acc
|
||
foldl f acc (x :: xs) = foldl f (f acc x) xs
|
||
|
||
infixl 9 _∘_
|
||
_∘_ : {A B C : U} -> (B -> C) -> (A -> B) -> A -> C
|
||
(f ∘ g) x = f (g x)
|
||
|
||
|
||
pfunc addInt : Int → Int → Int := `(x,y) => x + y`
|
||
pfunc mulInt : Int → Int → Int := `(x,y) => x * y`
|
||
pfunc subInt : Int → Int → Int := `(x,y) => x - y`
|
||
pfunc ltInt uses (True False) : Int → Int → Bool := `(x,y) => x < y ? True : False`
|
||
|
||
instance Mul Int where
|
||
x * y = mulInt x y
|
||
|
||
instance Add Int where
|
||
x + y = addInt x y
|
||
|
||
instance Sub Int where
|
||
x - y = subInt x y
|
||
|
||
instance Ord Int where
|
||
x < y = ltInt x y
|
||
|
||
printLn : {m} {{HasIO m}} {a} {{Show a}} → a → m Unit
|
||
printLn a = putStrLn (show a)
|
||
|
||
-- opaque JSObject
|
||
ptype JSObject
|
||
|
||
reverse : ∀ a. List a → List a
|
||
reverse {a} = go Nil
|
||
where
|
||
go : List a → List a → List a
|
||
go acc Nil = acc
|
||
go acc (x :: xs) = go (x :: acc) xs
|
||
|
||
-- Like Idris1, but not idris2, we need {a} to put a in scope.
|
||
span : ∀ a. (a -> Bool) -> List a -> List a × List a
|
||
span {a} f xs = go xs Nil
|
||
where
|
||
go : List a -> List a -> List a × List a
|
||
go Nil left = (reverse left, Nil)
|
||
go (x :: xs) left = if f x
|
||
then go xs (x :: left)
|
||
else (reverse left, x :: xs)
|
||
|
||
instance Show Nat where
|
||
show n = show (natToInt n)
|
||
|
||
enumerate : ∀ a. List a → List (Nat × a)
|
||
enumerate {a} xs = go Z xs
|
||
where
|
||
go : Nat → List a → List (Nat × a)
|
||
go k Nil = Nil
|
||
go k (x :: xs) = (k,x) :: go (S k) xs
|
||
|
||
filter : ∀ a. (a → Bool) → List a → List a
|
||
filter pred Nil = Nil
|
||
filter pred (x :: xs) = if pred x then x :: filter pred xs else filter pred xs
|
||
|
||
drop : ∀ a. Nat -> List a -> List a
|
||
drop _ Nil = Nil
|
||
drop Z xs = xs
|
||
drop (S k) (x :: xs) = drop k xs
|
||
|
||
take : ∀ a. Nat -> List a -> List a
|
||
take Z xs = Nil
|
||
take _ Nil = Nil
|
||
take (S k) (x :: xs) = x :: take k xs
|
||
|
||
getAt : ∀ a. Nat → List a → Maybe a
|
||
getAt _ Nil = Nothing
|
||
getAt Z (x :: xs) = Just x
|
||
getAt (S k) (x :: xs) = getAt k xs
|
||
|
||
splitOn : ∀ a. {{Eq a}} → a → List a → List (List a)
|
||
splitOn {a} v xs = go Nil xs
|
||
where
|
||
go : List a → List a → List (List a)
|
||
go acc Nil = reverse acc :: Nil
|
||
go acc (x :: xs) = if x == v
|
||
then reverse acc :: go Nil xs
|
||
else go (x :: acc) xs
|
||
|
||
|
||
class Inhabited a where
|
||
default : a
|
||
|
||
instance ∀ a. Inhabited (List a) where
|
||
default = Nil
|
||
|
||
getAt! : ∀ a. {{Inhabited a}} → Nat → List a → a
|
||
getAt! _ Nil = default
|
||
getAt! Z (x :: xs) = x
|
||
getAt! (S k) (x :: xs) = getAt! k xs
|
||
|
||
|
||
instance ∀ a. Applicative (Either a) where
|
||
return b = Right b
|
||
Right x <*> Right y = Right (x y)
|
||
Left x <*> _ = Left x
|
||
Right x <*> Left y = Left y
|
||
|
||
instance ∀ a. Monad (Either a) where
|
||
pure x = Right x
|
||
bind (Right x) mab = mab x
|
||
bind (Left x) mab = Left x
|
||
|
||
instance Monad Maybe where
|
||
pure x = Just x
|
||
bind Nothing mab = Nothing
|
||
bind (Just x) mab = mab x
|
||
|
||
|
||
elem : ∀ a. {{Eq a}} → a → List a → Bool
|
||
elem v Nil = False
|
||
elem v (x :: xs) = if v == x then True else elem v xs
|
||
|
||
-- TODO no empty value on my `Add`, I need a group..
|
||
-- sum : ∀ a. {{Add a}} → List a → a
|
||
-- sum xs = foldl _+_
|
||
pfunc trace uses (debugStr) : ∀ a. String -> a -> a := `(_, msg, a) => { console.log(msg,debugStr(_,a)); return a }`
|
||
|
||
mapMaybe : ∀ a b. (a → Maybe b) → List a → List b
|
||
mapMaybe f Nil = Nil
|
||
mapMaybe f (x :: xs) = case f x of
|
||
Just y => y :: mapMaybe f xs
|
||
Nothing => mapMaybe f xs
|
||
|
||
zip : ∀ a b. List a → List b → List (a × b)
|
||
zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys
|
||
zip _ _ = Nil
|
||
|
||
-- TODO add double literals
|
||
ptype Double
|
||
pfunc intToDouble : Int → Double := `(x) => x`
|
||
pfunc doubleToInt : Double → Int := `(x) => x`
|
||
pfunc addDouble : Double → Double → Double := `(x,y) => x + y`
|
||
pfunc subDouble : Double → Double → Double := `(x,y) => x - y`
|
||
pfunc mulDouble : Double → Double → Double := `(x,y) => x * y`
|
||
pfunc divDouble : Double → Double → Double := `(x,y) => x / y`
|
||
pfunc sqrtDouble : Double → Double := `(x) => Math.sqrt(x)`
|
||
pfunc ceilDouble : Double → Double := `(x) => Math.ceil(x)`
|
||
|
||
instance Add Double where x + y = addDouble x y
|
||
instance Sub Double where x - y = subDouble x y
|
||
instance Mul Double where x * y = mulDouble x y
|
||
instance Div Double where x / y = divDouble x y
|
||
|
||
ptype IOArray : U → U
|
||
pfunc newArray uses (MkIORes) : ∀ a. Int → a → IO (IOArray a) :=
|
||
`(_, n, v) => (w) => MkIORes(undefined,Array(n).fill(v),w)`
|
||
pfunc arrayGet : ∀ a. IOArray a → Int → IO a := `(_, arr, ix) => w => MkIORes(undefined, arr[ix], w)`
|
||
pfunc arraySet uses (MkUnit) : ∀ a. IOArray a → Int → a → IO Unit := `(_, arr, ix, v) => w => {
|
||
arr[ix] = v
|
||
return MkIORes(undefined, MkUnit, w)
|
||
}`
|
||
|
||
pfunc ioArrayToList uses (Nil _::_ MkIORes) : {0 a} → IOArray a → IO (List a) := `(a,arr) => w => {
|
||
let rval = Nil(a)
|
||
for (let i = arr.length - 1;i >= 0; i--) {
|
||
rval = _$3A$3A_(a, arr[i], rval)
|
||
}
|
||
return MkIORes(undefined, rval, w)
|
||
}`
|
||
|
||
class Cast a b where
|
||
cast : a → b
|
||
|
||
instance Cast Nat Int where
|
||
cast = natToInt
|
||
|
||
instance Cast Int Double where
|
||
cast = intToDouble
|
||
|
||
instance Applicative IO where
|
||
return a = \ w => MkIORes a w
|
||
f <*> a = \ w =>
|
||
let (MkIORes f w) = trace "fw" $ f w in
|
||
let (MkIORes a w) = trace "aw" $ a w in
|
||
MkIORes (f a) w
|
||
|
||
class Bifunctor (f : U → U → U) where
|
||
bimap : ∀ a b c d. (a → c) → (b → d) → f a b → f c d
|
||
|
||
mapFst : ∀ a b c f. {{Bifunctor f}} → (a → c) → f a b → f c b
|
||
mapFst f ab = bimap f id ab
|
||
|
||
mapSnd : ∀ a b c f. {{Bifunctor f}} → (b → c) → f a b → f a c
|
||
mapSnd f ab = bimap id f ab
|
||
|
||
isNothing : ∀ a. Maybe a → Bool
|
||
isNothing Nothing = True
|
||
isNothing _ = False
|
||
|
||
instance Bifunctor _×_ where
|
||
bimap f g (a,b) = (f a, g b)
|
||
|
||
instance Functor IO where
|
||
map f a = bind a $ \ a => pure (f a)
|
||
|
||
uncurry : ∀ a b c. (a -> b -> c) -> (a × b) -> c
|
||
uncurry f (a,b) = f a b
|