Files
newt/playground/samples/Combinatory.newt

102 lines
3.7 KiB
Agda
Raw Blame History

module Combinatory
-- "A correct-by-construction conversion from lambda calculus to combinatory logic", Wouter Swierstra
-- This does not fully typecheck in newt yet, but is adopted from a working Idris file. It
-- seems to do a good job exposing bugs.
data Unit : U where
MkUnit : Unit
infixr 7 _::_
data List : U -> U where
Nil : {A : U} -> List A
_::_ : {A : U} -> A -> List A -> List A
-- prj/menagerie/papers/combinatory
infixr 6 _~>_
data Type : U where
ι : Type
_~>_ : Type -> Type -> Type
A : U
A = Unit
Val : Type -> U
Val ι = A
Val (x ~> y) = Val x -> Val y
Ctx : U
Ctx = List Type
data Ref : Type -> Ctx -> U where
Here : {σ : Type} {Γ : Ctx} -> Ref σ (σ :: Γ)
There : {σ τ : Type} {Γ : Ctx} -> Ref σ Γ -> Ref σ (τ :: Γ)
data Term : Ctx -> Type -> U where
App : {Γ : Ctx} {σ τ : Type} -> Term Γ (σ ~> τ) -> Term Γ σ -> Term Γ τ
Lam : {Γ : Ctx} {σ τ : Type} -> Term (σ :: Γ) τ -> Term Γ (σ ~> τ)
Var : {Γ : Ctx} {σ : Type} -> Ref σ Γ Term Γ σ
infixr 7 _:::_
data Env : Ctx -> U where
ENil : Env Nil
_:::_ : {Γ : Ctx} {σ : Type} Val σ Env Γ Env (σ :: Γ)
-- TODO there is a problem here with coverage checking
-- I suspect something is being split before it's ready
-- lookup : {σ : Type} {Γ : Ctx} → Ref σ Γ → Env Γ → Val σ
-- lookup Here (x ::: y) = x
-- lookup (There i) (x ::: env) = lookup i env
lookup2 : {σ : Type} {Γ : Ctx} Env Γ Ref σ Γ Val σ
lookup2 (x ::: y) Here = x
lookup2 (x ::: env) (There i) = lookup2 env i
-- TODO MixFix - this was ⟦_⟧
eval : {Γ : Ctx} {σ : Type} Term Γ σ (Env Γ Val σ)
-- there was a unification error in direct application
eval (App t u) env = (eval t env) (eval u env)
eval (Lam t) env = \ x => eval t (x ::: env)
eval (Var i) env = lookup2 env i
data Comb : (Γ : Ctx) (u : Type) (Env Γ Val u) U where
S : {Γ : Ctx} {σ τ τ' : Type} Comb Γ ((σ ~> τ ~> τ') ~> (σ ~> τ) ~> (σ ~> τ')) (\ env => \ f g x => (f x) (g x))
K : {Γ : Ctx} {σ τ : Type} Comb Γ (σ ~> (τ ~> σ)) (\ env => \ x y => x)
I : {Γ : Ctx} {σ : Type} Comb Γ (σ ~> σ) (\ env => \ x => x)
B : {Γ : Ctx} {σ τ τ' : Type} Comb Γ ((τ ~> τ') ~> (σ ~> τ) ~> (σ ~> τ')) (\ env => \ f g x => f (g x))
C : {Γ : Ctx} {σ τ τ' : Type} Comb Γ ((σ ~> τ ~> τ') ~> τ ~> (σ ~> τ')) (\ env => \ f g x => (f x) g)
CVar : {Γ : Ctx} {σ : Type} (i : Ref σ Γ) Comb Γ σ (\ env => lookup2 env i)
CApp : {Γ : Ctx} {σ τ : Type} {f : _} {x : _} Comb Γ (σ ~> τ) f Comb Γ σ x Comb Γ τ (\ env => (f env) (x env))
sapp : {Γ : Ctx} {σ τ ρ : Type} {f : _} {x : _}
Comb Γ (σ ~> τ ~> ρ) f
Comb Γ (σ ~> τ) x
Comb Γ (σ ~> ρ) (\ env y => (f env y) (x env y))
sapp (CApp K t) I = t
sapp (CApp K t) (CApp K u) = CApp K (CApp t u)
-- was out of pattern because of unexpanded lets.
sapp (CApp K t) u = CApp (CApp B t) u
-- TODO unsolved meta, out of pattern fragment
sapp t (CApp K u) = ? -- CApp (CApp C t) u
-- TODO unsolved meta, out of pattern fragment
sapp t u = ? -- CApp (CApp S t) u
abs : {Γ : Ctx} {σ τ : Type} {f : _} Comb (σ :: Γ) τ f Comb Γ (σ ~> τ) (\ env x => f (x ::: env))
abs S = CApp K S
abs K = CApp K K
abs I = CApp K I
abs B = CApp K B
abs C = CApp K C
abs (CApp t u) = sapp (abs t) (abs u)
-- lookup2 was getting stuck, needed to bounce the types in a rewritten env.
abs (CVar Here) = I
abs (CVar (There i)) = CApp K (CVar i)
translate : {Γ : Ctx} {σ : Type} (tm : Term Γ σ) Comb Γ σ (eval tm)
translate (App t u) = CApp (translate t) (translate u)
translate (Lam t) = abs (translate t)
translate (Var i) = CVar i