Files
newt/done/Lib/Types.newt
2025-01-02 10:05:27 -08:00

518 lines
16 KiB
Agda
Raw Blame History

module Lib.Types
-- For FC, Error
import Lib.Common
import Lib.Prettier
import Data.Fin
import Data.IORef
import Data.List
import Data.SnocList
import Data.SortedMap
import Data.String
import Data.Vect
data QName : U where
QN : List String -> String -> QName
instance Eq QName where
QN ns n == QN ns' n' = n == n' && ns == ns'
instance Show QName where
show (QN Nil n) = n
show (QN ns n) = joinBy "." ns ++ "." ++ n
instance Interpolation QName where
interpolate = show
instance Ord QName where
compare (QN ns nm) (QN ns' nm') = if ns == ns' then compare nm nm' else compare ns ns'
Name : U
Name = String
data Icit = Implicit | Explicit | Auto
instance Show Icit where
show Implicit = "Implicit"
show Explicit = "Explicit"
show Auto = "Auto"
data BD = Bound | Defined
instance Eq BD where
Bound == Bound = True
Defined == Defined = True
_ == _ = False
instance Show BD where
show Bound = "bnd"
show Defined = "def"
data Quant = Zero | Many
instance Show Quant where
show Zero = "0 "
show Many = ""
instance Eq Quant where
Zero == Zero = True
Many == Many = True
_ == _ = False
-- We could make this polymorphic and use for environment...
data BindInfo : U where
BI : (fc : FC) -> (name : Name) -> (icit : Icit) -> (quant : Quant) -> BindInfo
instance HasFC BindInfo where
getFC (BI fc _ _ _) = fc
Tm : U
data Literal = LString String | LInt Int | LChar Char
instance Show Literal where
show (LString str) = show str
show (LInt i) = show i
show (LChar c) = show c
data CaseAlt : U where
CaseDefault : Tm -> CaseAlt
CaseCons : (name : QName) -> (args : List String) -> Tm -> CaseAlt
CaseLit : Literal -> Tm -> CaseAlt
Def : U
instance Eq Literal where
LString x == LString y = x == y
LInt x == LInt y = x == y
LChar x == LChar y = x == y
_ == _ = False
data Tm : U where
Bnd : FC -> Int -> Tm
-- Maybe Def here instead of Maybe Tm, we'll have DCon, TCon, etc.
Ref : FC -> QName -> Def -> Tm
Meta : FC -> Int -> Tm
-- kovacs optimization, I think we can App out meta instead
-- InsMeta : Int -> List BD -> Tm
Lam : FC -> Name -> Icit -> Quant -> Tm -> Tm
App : FC -> Tm -> Tm -> Tm
UU : FC -> Tm
Pi : FC -> Name -> Icit -> Quant -> Tm -> Tm -> Tm
Case : FC -> Tm -> List CaseAlt -> Tm
-- need type?
Let : FC -> Name -> Tm -> Tm -> Tm
-- for desugaring where
LetRec : FC -> Name -> Tm -> Tm -> Tm -> Tm
Lit : FC -> Literal -> Tm
Erased : FC -> Tm
instance HasFC Tm where
getFC (Bnd fc k) = fc
getFC (Ref fc str x) = fc
getFC (Meta fc k) = fc
getFC (Lam fc str _ _ t) = fc
getFC (App fc t u) = fc
getFC (UU fc) = fc
getFC (Pi fc str icit quant t u) = fc
getFC (Case fc t xs) = fc
getFC (Lit fc _) = fc
getFC (Let fc _ _ _) = fc
getFC (LetRec fc _ _ _ _) = fc
getFC (Erased fc) = fc
showCaseAlt : CaseAlt String
instance Show Tm where
show (Bnd _ k) = "(Bnd \{show k})"
show (Ref _ str _) = "(Ref \{show str})"
show (Lam _ nm icit rig t) = "(\\ \{show rig}\{nm} => \{show t})"
show (App _ t u) = "(\{show t} \{show u})"
show (Meta _ i) = "(Meta \{show i})"
show (Lit _ l) = "(Lit \{show l})"
show (UU _) = "U"
show (Pi _ str Explicit rig t u) = "(Pi (\{show rig}\{str} : \{show t}) => \{show u})"
show (Pi _ str Implicit rig t u) = "(Pi {\{show rig}\{str} : \{show t}} => \{show u})"
show (Pi _ str Auto rig t u) = "(Pi {{\{show rig}\{str} : \{show t}}} => \{show u})"
show (Case _ sc alts) = "(Case \{show sc} \{show $ map showCaseAlt alts})"
show (Let _ nm t u) = "(Let \{nm} \{show t} \{show u})"
show (LetRec _ nm ty t u) = "(LetRec \{nm} : \{show ty} \{show t} \{show u})"
show (Erased _) = "ERASED"
showCaseAlt (CaseDefault tm) = "_ => \{show tm}"
showCaseAlt (CaseCons nm args tm) = "\{show nm} \{unwords args} => \{show tm}"
showCaseAlt (CaseLit lit tm) = "\{show lit} => \{show tm}"
showTm : Tm -> String
showTm = show
-- I can't really show val because it's HOAS...
-- TODO derive
instance Eq Icit where
Implicit == Implicit = True
Explicit == Explicit = True
Auto == Auto = True
_ == _ = False
-- Eq on Tm. We've got deBruijn indices, so I'm not comparing names
instance Eq (Tm) where
-- (Local x) == (Local y) = x == y
(Bnd _ x) == (Bnd _ y) = x == y
(Ref _ x _) == Ref _ y _ = x == y
(Lam _ n _ _ t) == Lam _ n' _ _ t' = t == t'
(App _ t u) == App _ t' u' = t == t' && u == u'
(UU _) == (UU _) = True
(Pi _ n icit rig t u) == (Pi _ n' icit' rig' t' u') = icit == icit' && rig == rig' && t == t' && u == u'
_ == _ = False
-- TODO App and Lam should have <+/> but we need to fix
-- INFO pprint to `nest 2 ...`
-- maybe return Doc and have an Interpolation..
-- If we need to flatten, case is going to get in the way.
pprint' : Int -> List String -> Tm -> Doc
pprintAlt : Int -> List String -> CaseAlt -> Doc
pprintAlt p names (CaseDefault t) = text "_" <+> text "=>" <+> pprint' p ("_" :: names) t
pprintAlt p names (CaseCons name args t) = text (show name) <+> spread (map text args) <+> (nest 2 $ text "=>" <+/> pprint' p (reverse args ++ names) t)
-- `;` is not in surface syntax, but sometimes we print on one line
pprintAlt p names (CaseLit lit t) = text (show lit) <+> (nest 2 $ text "=>" <+/> pprint' p names t ++ text ";")
parens : Int -> Int -> Doc -> Doc
parens a b doc = if a < b
then text "(" ++ doc ++ text ")"
else doc
pprint' p names (Bnd _ k) = case getAt (cast k) names of
-- Either a bug or we're printing without names
Nothing => text "BND:\{show k}"
Just nm => text "\{nm}:\{show k}"
pprint' p names (Ref _ str mt) = text (show str)
pprint' p names (Meta _ k) = text "?m:\{show k}"
pprint' p names (Lam _ nm icit quant t) = parens 0 p $ nest 2 $ text "\\ \{show quant}\{nm} =>" <+/> pprint' 0 (nm :: names) t
pprint' p names (App _ t u) = parens 0 p $ pprint' 0 names t <+> pprint' 1 names u
pprint' p names (UU _) = text "U"
pprint' p names (Pi _ nm Auto rig t u) = parens 0 p $
text "{{" ++ text (show rig) <+> text nm <+> text ":" <+> pprint' 0 names t <+> text "}}" <+> text "->" <+> pprint' 0 (nm :: names) u
pprint' p names (Pi _ nm Implicit rig t u) = parens 0 p $
text "{" ++ text (show rig) <+> text nm <+> text ":" <+> pprint' 0 names t <+> text "}" <+> text "->" <+> pprint' 0 (nm :: names) u
pprint' p names (Pi _ "_" Explicit Many t u) =
parens 0 p $ pprint' 1 names t <+> text "->" <+> pprint' 0 ("_" :: names) u
pprint' p names (Pi _ nm Explicit rig t u) = parens 0 p $
text "(" ++ text (show rig) <+> text nm <+> text ":" <+> pprint' 0 names t ++ text ")" <+> text "->" <+> pprint' 0 (nm :: names) u
-- FIXME - probably way wrong on the names here. There is implicit binding going on
pprint' p names (Case _ sc alts) = parens 0 p $ text "case" <+> pprint' 0 names sc <+> text "of" ++ (nest 2 (line ++ stack (map (pprintAlt 0 names) alts)))
pprint' p names (Lit _ lit) = text (show lit)
pprint' p names (Let _ nm t u) = parens 0 p $ text "let" <+> text nm <+> text ":=" <+> pprint' 0 names t <+> text "in" </> (nest 2 $ pprint' 0 (nm :: names) u)
pprint' p names (LetRec _ nm ty t u) = parens 0 p $ text "letrec" <+> text nm <+> text ":" <+> pprint' 0 names ty <+> text ":=" <+> pprint' 0 names t <+> text "in" </> (nest 2 $ pprint' 0 (nm :: names) u)
pprint' p names (Erased _) = text "ERASED"
-- Pretty printer for Tm.
pprint : List String -> Tm -> Doc
pprint names tm = pprint' 0 names tm
Val : U
-- IS/TypeTheory.idr is calling this a Kripke function space
-- Yaffle, IS/TypeTheory use a function here.
-- Kovacs, Idris use Env and Tm
-- in cctt kovacs refers to this choice as defunctionalization vs HOAS
-- https://github.com/AndrasKovacs/cctt/blob/main/README.md#defunctionalization
-- the tradeoff is access to internals of the function
-- Yaffle is vars -> vars here
Closure : U
data Val : U where
-- This will be local / flex with spine.
VVar : FC -> (k : Int) -> (sp : SnocList Val) -> Val
VRef : FC -> (nm : QName) -> Def -> (sp : SnocList Val) -> Val
-- neutral case
VCase : FC -> (sc : Val) -> List CaseAlt -> Val
-- we'll need to look this up in ctx with IO
VMeta : FC -> (ix : Int) -> (sp : SnocList Val) -> Val
VLam : FC -> Name -> Icit -> Quant -> Closure -> Val
VPi : FC -> Name -> Icit -> Quant -> (a : Val) -> (b : Closure) -> Val
VLet : FC -> Name -> Val -> Val -> Val
VLetRec : FC -> Name -> Val -> Val -> Val -> Val
VU : FC -> Val
VErased : FC -> Val
VLit : FC -> Literal -> Val
Env : U
Env = List Val
data Mode = CBN | CBV
data Closure = MkClosure Env Tm
getValFC : Val -> FC
getValFC (VVar fc _ _) = fc
getValFC (VRef fc _ _ _) = fc
getValFC (VCase fc _ _) = fc
getValFC (VMeta fc _ _) = fc
getValFC (VLam fc _ _ _ _) = fc
getValFC (VPi fc _ _ _ a b) = fc
getValFC (VU fc) = fc
getValFC (VErased fc) = fc
getValFC (VLit fc _) = fc
getValFC (VLet fc _ _ _) = fc
getValFC (VLetRec fc _ _ _ _) = fc
instance HasFC Val where getFC = getValFC
showClosure : Closure String
instance Show Val where
show (VVar _ k Lin) = "%var\{show k}"
show (VVar _ k sp) = "(%var\{show k} \{unwords $ map show (sp <>> Nil)})"
show (VRef _ nm _ Lin) = show nm
show (VRef _ nm _ sp) = "(\{show nm} \{unwords $ map show (sp <>> Nil)})"
show (VMeta _ ix sp) = "(%meta \{show ix} (\{show $ snoclen sp} sp :: Nil))"
show (VLam _ str icit quant x) = "(%lam \{show quant}\{str} \{showClosure x})"
show (VPi fc str Implicit rig x y) = "(%pi {\{show rig} \{str} : \{show x}}. \{showClosure y})"
show (VPi fc str Explicit rig x y) = "(%pi (\{show rig} \{str} : \{show x}). \{showClosure y})"
show (VPi fc str Auto rig x y) = "(%pi {{\{show rig} \{str} : \{show x}}}. \{showClosure y})"
show (VCase fc sc alts) = "(%case \{show sc} ...)"
show (VU _) = "U"
show (VLit _ lit) = show lit
show (VLet _ nm a b) = "(%let \{show nm} = \{show a} in \{show b}"
show (VLetRec _ nm ty a b) = "(%letrec \{show nm} : \{show ty} = \{show a} in \{show b}"
show (VErased _) = "ERASED"
showClosure (MkClosure xs t) = "(%cl (\{show $ length xs} env :: Nil) \{show t})"
-- instance Show Closure where
-- show = showClosure
Context : U
data MetaKind = Normal | User | AutoSolve
instance Show MetaKind where
show Normal = "Normal"
show User = "User"
show AutoSolve = "Auto"
-- constrain meta applied to val to be a val
data MConstraint = MkMc FC Env (SnocList Val) Val
data MetaEntry = Unsolved FC Int Context Val MetaKind (List MConstraint) | Solved FC Int Val
record MetaContext where
constructor MC
metas : List MetaEntry
next : Int
data Def = Axiom | TCon (List QName) | DCon Int QName | Fn Tm | PrimTCon
| PrimFn String (List String)
instance Show Def where
show Axiom = "axiom"
show (TCon strs) = "TCon \{show strs}"
show (DCon k tyname) = "DCon \{show k} \{show tyname}"
show (Fn t) = "Fn \{show t}"
show (PrimTCon) = "PrimTCon"
show (PrimFn src used) = "PrimFn \{show src} \{show used}"
-- entry in the top level context
record TopEntry where
constructor MkEntry
fc : FC
name : QName
type : Tm
def : Def
-- FIXME snoc
instance Show TopEntry where
show (MkEntry fc name type def) = "\{show name} : \{show type} := \{show def}"
-- Top level context.
-- Most of the reason this is separate is to have a different type
-- `Def` for the entries.
--
-- The price is that we have names in addition to levels. Do we want to
-- expand these during normalization?
record TopContext where
constructor MkTop
-- We'll add a map later?
defs : SortedMap QName TopEntry
metaCtx : IORef MetaContext
verbose : Bool -- command line flag
errors : IORef (List Error)
-- loaded modules
loaded : List String
ops : Operators
-- we'll use this for typechecking, but need to keep a TopContext around too.
record Context where
constructor MkCtx
lvl : Int
-- shall we use lvl as an index?
env : Env -- Values in scope
types : List (String × Val) -- types and names in scope
-- so we'll try "bds" determines length of local context
bds : List BD -- bound or defined
-- FC to use if we don't have a better option
ctxFC : FC
-- add a binding to environment
extend : Context -> String -> Val -> Context
extend (MkCtx lvl env types bds ctxFC) name ty =
MkCtx (1 + lvl) (VVar emptyFC lvl Lin :: env) ((name,ty) :: types) (Bound :: bds) ctxFC
-- I guess we define things as values?
define : Context -> String -> Val -> Val -> Context
define (MkCtx lvl env types bds ctxFC) name val ty =
MkCtx (1 + lvl) (val :: env) ((name,ty) :: types) (Defined :: bds) ctxFC
instance Show MetaEntry where
show (Unsolved pos k ctx ty kind constraints) = "Unsolved \{show pos} \{show k} \{show kind} : \{show ty} \{show ctx.bds} cs \{show $ length constraints}"
show (Solved _ k x) = "Solved \{show k} \{show x}"
withPos : Context -> FC -> Context
withPos (MkCtx lvl env types bds ctxFC) fc = (MkCtx lvl env types bds fc)
names : Context -> List String
names ctx = map fst ctx.types
-- public export
-- M : U -> U
-- M = (StateT TopContext (EitherT Error IO))
record M a where
constructor MkM
runM : TopContext -> IO (Either Error (TopContext × a))
instance Functor M where
map f (MkM run) = MkM $ \tc => bind {IO} (run tc) $ \case
Left err => pure $ Left err
Right (tc', a) => pure $ Right (tc', f a)
instance Applicative M where
return x = MkM $ \tc => pure $ Right (tc, x)
(MkM f) <*> (MkM x) = MkM $ \tc => bind {IO} (f tc) $ \case
Left err => pure $ Left err
Right (tc', f') => bind {IO} (x tc') $ \case
Left err => pure $ Left err
Right (tc'', x') => pure $ Right (tc'', f' x')
instance Monad M where
pure = return
bind (MkM x) f = MkM $ \tc => bind {IO} (x tc) $ \case
Left err => pure $ Left err
Right (tc', a) => runM (f a) tc'
instance HasIO M where
liftIO io = MkM $ \tc => do
result <- io
pure $ Right (tc, result)
throwError : a. Error -> M a
throwError err = MkM $ \_ => pure $ Left err
catchError : a. M a -> (Error -> M a) -> M a
catchError (MkM ma) handler = MkM $ \tc => bind {IO} (ma tc) $ \case
Left err => runM (handler err) tc
Right (tc', a) => pure $ Right (tc', a)
tryError : a. M a -> M (Either Error a)
tryError ma = catchError (map Right ma) (pure Left)
get : M TopContext
get = MkM $ \ tc => pure $ Right (tc, tc)
put : TopContext -> M Unit
put tc = MkM $ \_ => pure $ Right (tc, MkUnit)
modify : (TopContext -> TopContext) -> M Unit
modify f = do
tc <- get
put (f tc)
-- Force argument and print if verbose is true
debug : Lazy String -> M Unit
debug x = do
top <- get
when top.verbose $ \ _ => putStrLn $ force x
info : FC -> String -> M Unit
info fc msg = putStrLn "INFO at \{show fc}: \{msg}"
-- Version of debug that makes monadic computation lazy
debugM : M String -> M Unit
debugM x = do
top <- get
when top.verbose $ \ _ => do
msg <- x
putStrLn msg
instance Show Context where
show ctx = "Context \{show $ map fst $ ctx.types}"
errorMsg : Error -> String
errorMsg (E x str) = str
errorMsg (Postpone x k str) = str
instance HasFC Error where
getFC (E x str) = x
getFC (Postpone x k str) = x
error : a. FC -> String -> M a
error fc msg = throwError $ E fc msg
error' : a. String -> M a
error' msg = throwError $ E emptyFC msg
freshMeta : Context -> FC -> Val -> MetaKind -> M Tm
freshMeta ctx fc ty kind = do
top <- get
mc <- readIORef top.metaCtx
debug $ \ _ => "fresh meta \{show mc.next} : \{show ty} (\{show kind})"
writeIORef top.metaCtx $ MC (Unsolved fc mc.next ctx ty kind Nil :: mc.metas) (1 + mc.next)
pure $ applyBDs 0 (Meta fc mc.next) ctx.bds
where
-- hope I got the right order here :)
applyBDs : Int -> Tm -> List BD -> Tm
applyBDs k t Nil = t
-- review the order here
applyBDs k t (Bound :: xs) = App emptyFC (applyBDs (1 + k) t xs) (Bnd emptyFC k)
applyBDs k t (Defined :: xs) = applyBDs (1 + k) t xs
lookupMeta : Int -> M MetaEntry
lookupMeta ix = do
top <- get
mc <- readIORef top.metaCtx
go mc.metas
where
go : List MetaEntry -> M MetaEntry
go Nil = error' "Meta \{show ix} not found"
go (meta@(Unsolved _ k ys _ _ _) :: xs) = if k == ix then pure meta else go xs
go (meta@(Solved _ k x) :: xs) = if k == ix then pure meta else go xs
-- we need more of topcontext later - Maybe switch it up so we're not passing
-- around top
mkCtx : FC -> Context
mkCtx fc = MkCtx 0 Nil Nil Nil fc