Files
newt/done/Data/SortedMap.newt

206 lines
8.5 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
module Data.SortedMap
import Prelude
-- TODO We'll want to replace Ord/Eq with (a → Ordering) (and rewrite most of our aoc solutions...)
data T23 : Nat -> U -> U -> U where
Leaf : k v. k -> v -> T23 Z k v
Node2 : h k v. T23 h k v -> k -> T23 h k v -> T23 (S h) k v
Node3 : h k v. T23 h k v -> k -> T23 h k v -> k -> T23 h k v -> T23 (S h) k v
lookupT23 : h k v. {{Ord k}} -> k -> T23 h k v -> Maybe (k × v)
lookupT23 key (Leaf k v)= case compare k key of
EQ => Just (k,v)
_ => Nothing
lookupT23 key (Node2 t1 k1 t2) =
if key <= k1 then lookupT23 key t1 else lookupT23 key t2
lookupT23 key (Node3 t1 k1 t2 k2 t3) =
if key <= k1 then lookupT23 key t1
else if key <= k2 then lookupT23 key t2
else lookupT23 key t3
insertT23 : h k v. {{Ord k}} -> k -> v -> T23 h k v -> Either (T23 h k v) (T23 h k v × k × T23 h k v)
insertT23 key value (Leaf k v) = case compare key k of
EQ => Left (Leaf key value)
LT => Right (Leaf key value, key, Leaf k v)
GT => Right (Leaf k v, k, Leaf key value)
insertT23 key value (Node2 t1 k1 t2) =
if key <= k1 then
case insertT23 key value t1 of
Left t1' => Left (Node2 t1' k1 t2)
Right (a,b,c) => Left (Node3 a b c k1 t2)
else case insertT23 key value t2 of
Left t2' => Left (Node2 t1 k1 t2')
Right (a,b,c) => Left (Node3 t1 k1 a b c)
insertT23 key value (Node3 t1 k1 t2 k2 t3) =
if key <= k1 then
case insertT23 key value t1 of
Left t1' => Left (Node3 t1' k1 t2 k2 t3)
Right (a,b,c) => Right (Node2 a b c, k1, Node2 t2 k2 t3)
else if key <= k2 then
case insertT23 key value t2 of
Left t2' => Left (Node3 t1 k1 t2' k2 t3)
Right (a,b,c) => Right (Node2 t1 k1 a, b, Node2 c k2 t3)
else
case insertT23 key value t3 of
Left t3' => Left (Node3 t1 k1 t2 k2 t3')
Right (a,b,c) => Right (Node2 t1 k1 t2, k2, Node2 a b c)
-- This is cribbed from Idris. Deleting nodes takes a bit of code.
Hole : Nat U U U
Hole Z k v = Unit
Hole (S n) k v = T23 n k v
Node4 : k v h. T23 h k v k T23 h k v k T23 h k v k T23 h k v T23 (S (S h)) k v
Node4 t1 k1 t2 k2 t3 k3 t4 = Node2 (Node2 t1 k1 t2) k2 (Node2 t3 k3 t4)
Node5 : k v h. T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v T23 (S (S h)) k v
Node5 a b c d e f g h i = Node2 (Node2 a b c) d (Node3 e f g h i)
Node6 : k v h. T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v T23 (S (S h)) k v
Node6 a b c d e f g h i j k = Node2 (Node3 a b c d e) f (Node3 g h i j k)
Node7 : k v h. T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v k T23 h k v T23 (S (S h)) k v
Node7 a b c d e f g h i j k l m = Node3 (Node3 a b c d e) f (Node2 g h i) j (Node2 k l m)
merge1 : k v h. T23 h k v k T23 (S h) k v k T23 (S h) k v T23 (S (S h)) k v
merge1 a b (Node2 c d e) f (Node2 g h i) = Node5 a b c d e f g h i
merge1 a b (Node2 c d e) f (Node3 g h i j k) = Node6 a b c d e f g h i j k
merge1 a b (Node3 c d e f g) h (Node2 i j k) = Node6 a b c d e f g h i j k
merge1 a b (Node3 c d e f g) h (Node3 i j k l m) = Node7 a b c d e f g h i j k l m
merge2 : k v h. T23 (S h) k v k T23 h k v k T23 (S h) k v T23 (S (S h)) k v
merge2 (Node2 a b c) d e f (Node2 g h i) = Node5 a b c d e f g h i
merge2 (Node2 a b c) d e f (Node3 g h i j k) = Node6 a b c d e f g h i j k
merge2 (Node3 a b c d e) f g h (Node2 i j k) = Node6 a b c d e f g h i j k
merge2 (Node3 a b c d e) f g h (Node3 i j k l m) = Node7 a b c d e f g h i j k l m
merge3 : k v h. T23 (S h) k v k T23 (S h) k v k T23 h k v T23 (S (S h)) k v
merge3 (Node2 a b c) d (Node2 e f g) h i = Node5 a b c d e f g h i
merge3 (Node2 a b c) d (Node3 e f g h i) j k = Node6 a b c d e f g h i j k
merge3 (Node3 a b c d e) f (Node2 g h i) j k = Node6 a b c d e f g h i j k
merge3 (Node3 a b c d e) f (Node3 g h i j k) l m = Node7 a b c d e f g h i j k l m
-- height is erased in the data everywhere but the top, but needed for case
-- I wonder if we could use a 1 + 1 + 1 type instead of Either Tree Hole and condense this
deleteT23 : k v. {{Ord k}} (h : Nat) -> k -> T23 h k v -> Either (T23 h k v) (Hole h k v)
deleteT23 Z key (Leaf k v) = case compare k key of
EQ => Right MkUnit
_ => Left (Leaf k v)
deleteT23 (S Z) key (Node2 t1 k1 t2) =
if key <= k1
then case deleteT23 Z key t1 of
Left t1 => Left (Node2 t1 k1 t2)
Right _ => Right t2
else case deleteT23 Z key t2 of
Left t2 => Left (Node2 t1 k1 t2)
Right MkUnit => Right t1
deleteT23 (S Z) key (Node3 t1 k1 t2 k2 t3) =
if key <= k1
then case deleteT23 _ key t1 of
Left t1 => Left (Node3 t1 k1 t2 k2 t3)
Right MkUnit => Left (Node2 t2 k2 t3)
else if key <= k2 then case deleteT23 _ key t2 of
Left t2 => Left (Node3 t1 k1 t2 k2 t3)
Right _ => Left (Node2 t1 k1 t3)
else case deleteT23 _ key t3 of
Left t3 => Left (Node3 t1 k1 t2 k2 t3)
Right _ => Left (Node2 t1 k1 t2)
deleteT23 (S (S h)) key (Node2 t1 k1 t2) =
if key <= k1
then case deleteT23 (S h) key t1 of
Left t1 => Left (Node2 t1 k1 t2)
Right t1 => case t2 of
Node2 t2' k2' t3' => Right (Node3 t1 k1 t2' k2' t3')
Node3 t2 k2 t3 k3 t4 => Left $ Node4 t1 k1 t2 k2 t3 k3 t4
else case deleteT23 _ key t2 of
Left t2 => Left (Node2 t1 k1 t2)
Right t2 => case t1 of
Node2 a b c => Right (Node3 a b c k1 t2)
Node3 a b c d e => Left (Node4 a b c d e k1 t2)
deleteT23 (S (S h)) key (Node3 t1 k1 t2 k2 t3) =
if key <= k1
then case deleteT23 _ key t1 of
Left t1 => Left (Node3 t1 k1 t2 k2 t3)
Right t1 => Left (merge1 t1 k1 t2 k2 t3)
else if key <= k2 then case deleteT23 _ key t2 of
Left t2 => Left (Node3 t1 k1 t2 k2 t3)
Right t2 => Left (merge2 t1 k1 t2 k2 t3)
else case deleteT23 _ key t3 of
Left t3 => Left (Node3 t1 k1 t2 k2 t3)
Right t3 => Left (merge3 t1 k1 t2 k2 t3)
treeLeft : h k v. T23 h k v (k × v)
treeLeft (Leaf k v) = (k, v)
treeLeft (Node2 t1 _ _) = treeLeft t1
treeLeft (Node3 t1 _ _ _ _) = treeLeft t1
treeRight : h k v. T23 h k v (k × v)
treeRight (Leaf k v) = (k, v)
treeRight (Node2 _ _ t2) = treeRight t2
treeRight (Node3 _ _ _ _ t3) = treeRight t3
data SortedMap : U -> U -> U where
EmptyMap : k v. SortedMap k v
-- not erased so we know what happens in delete
MapOf : k v. {h : Nat} T23 h k v -> SortedMap k v
deleteMap : k v. {{Ord k}} k SortedMap k v SortedMap k v
deleteMap key EmptyMap = EmptyMap
-- REVIEW if I split h separately in a nested case, it doesn't sort out Hole
deleteMap key (MapOf {k} {v} {Z} tree) = case deleteT23 Z key tree of
Left t => MapOf t
Right t => EmptyMap
deleteMap key (MapOf {k} {v} {S n} tree) = case deleteT23 (S n) key tree of
Left t => MapOf t
Right t => MapOf t
leftMost : k v. SortedMap k v Maybe (k × v)
leftMost EmptyMap = Nothing
leftMost (MapOf m) = Just (treeLeft m)
rightMost : k v. SortedMap k v Maybe (k × v)
rightMost EmptyMap = Nothing
rightMost (MapOf m) = Just (treeRight m)
-- TODO issue with metas and case if written as `do` block
pop : k v. {{Ord k}} SortedMap k v Maybe ((k × v) × SortedMap k v)
pop m = case leftMost m of
Just (k,v) => Just ((k,v), deleteMap k m)
Nothing => Nothing
lookupMap : k v. {{Ord k}} -> k -> SortedMap k v -> Maybe (k × v)
lookupMap k EmptyMap = Nothing
lookupMap k (MapOf map) = lookupT23 k map
lookupMap' : k v. {{Ord k}} -> k -> SortedMap k v -> Maybe v
lookupMap' k EmptyMap = Nothing
lookupMap' k (MapOf map) = snd <$> lookupT23 k map
updateMap : k v. {{Ord k}} -> k -> v -> SortedMap k v -> SortedMap k v
updateMap k v EmptyMap = MapOf $ Leaf k v
updateMap k v (MapOf map) = case insertT23 k v map of
Left map' => MapOf map'
Right (a, b, c) => MapOf (Node2 a b c)
toList : k v. SortedMap k v List (k × v)
toList {k} {v} (MapOf smap) = reverse $ go smap Nil
where
go : h. T23 h k v List (k × v) List (k × v)
go (Leaf k v) acc = (k, v) :: acc
go (Node2 t1 k1 t2) acc = go t2 (go t1 acc)
go (Node3 t1 k1 t2 k2 t3) acc = go t3 $ go t2 $ go t1 acc
toList _ = Nil
foldMap : a b. {{Ord a}} (b b b) SortedMap a b List (a × b) SortedMap a b
foldMap f m Nil = m
foldMap f m ((a,b) :: xs) = case lookupMap a m of
Nothing => foldMap f (updateMap a b m) xs
Just (_, b') => foldMap f (updateMap a (f b' b) m) xs
listValues : k v. SortedMap k v List v
listValues sm = map snd $ toList sm