Files
newt/src/Lib/CompileExp.newt
Steve Dunham d6156ebc79 Fix aoc2024 build
- Holes are no longer allowed when building executables
- Stack overflow in mapMaybe (Day15)
2025-04-10 08:50:52 -04:00

252 lines
8.9 KiB
Agda
Raw Blame History

-- First pass of compilation
-- - work out arities and fully apply functions / constructors (currying)
-- currying is problemmatic because we need to insert lambdas (η-expand) and
-- it breaks all of the de Bruijn indices
-- - expand metas (this is happening earlier)
-- - erase stuff (there is another copy that essentially does the same thing)
-- I could make names unique (e.q. on lambdas), but I might want that to vary per backend?
module Lib.CompileExp
import Prelude
import Lib.Common
import Lib.Types -- Name / Tm
import Lib.TopContext
import Lib.Prettier
import Lib.Util
import Lib.Ref2
import Data.SortedMap
-- REVIEW Separate pass for constructor magic?
-- ConCase SuccCon will be replaced by Default CLet,
-- but we would need to fix up zero, since we collapse extra constructors into a default case.
-- But should be ok becaon CLitAlt doesn't bind.
CExp : U
data CAlt : U where
CConAlt : String ConInfo List String CExp CAlt
-- REVIEW keep var name?
CDefAlt : CExp -> CAlt
-- literal
CLitAlt : Literal -> CExp -> CAlt
data CExp : U where
CBnd : Int -> CExp
-- How is CLam different from CFun with one arg?
CLam : Name -> CExp -> CExp
CFun : List Name -> CExp -> CExp
CApp : CExp -> List CExp -> Int -> CExp
CCase : CExp -> List CAlt -> CExp
CRef : QName -> CExp
CMeta : Int -> CExp
CLit : Literal -> CExp
CLet : Name -> CExp -> CExp -> CExp
CLetRec : Name -> CExp -> CExp -> CExp
CErased : CExp
-- Data / type constructor
CConstr : Name -> List CExp -> CExp
-- Raw javascript for `pfunc`
CRaw : String -> List QName -> CExp
-- Need this for magic Nat
-- TODO - use for primitives too
CPrimOp : String CExp CExp -> CExp
-- I'm counting Lam in the term for arity. This matches what I need in
-- code gen.
lamArity : Tm -> Nat
lamArity (Lam _ _ _ _ t) = S (lamArity t)
lamArity _ = Z
-- This is how much we want to curry at top level
-- leading lambda Arity is used for function defs and metas
-- TODO - figure out how this will work with erasure
arityForName : {{Ref2 Defs St}} FC -> QName -> M Nat
arityForName fc nm = do
defs <- getRef Defs
case lookupMap' nm defs of
Nothing => error fc "Name \{show nm} not in scope"
(Just Axiom) => pure Z
(Just (TCon arity strs)) => pure $ cast arity
(Just (DCon _ k str)) => pure $ cast k
(Just (Fn t)) => pure $ lamArity t
(Just (PrimTCon arity)) => pure $ cast arity
(Just (PrimFn t arity used)) => pure arity
any : a. (a Bool) List a Bool
any f Nil = False
any f (x :: xs) = if f x then True else any f xs
-- need to eta out extra args, fill in the rest of the apps
-- NOW - maybe eta here instead of Compile.newt, drop number on CApp
-- The problem would be deBruijn. We have to put the app under CLam
-- which would mess up all of the deBruijn (unless we push it out)
apply : CExp -> List CExp -> SnocList CExp -> Nat -> M CExp
-- out of args, make one up (fix that last arg)
apply t Nil acc (S k) =
pure $ CApp t (acc <>> Nil) (1 + cast k)
apply t (x :: xs) acc (S k) = apply t xs (acc :< x) k
-- once we hit zero, we fold the rest
apply t ts acc Z = go (CApp t (acc <>> Nil) 0) ts
where
go : CExp -> List CExp -> M CExp
-- drop zero arg call
go (CApp t Nil 0) args = go t args
go t Nil = pure t
go t (arg :: args) = go (CApp t (arg :: Nil) 0) args
lookupDef : {{Ref2 Defs St}} FC QName M Def
lookupDef fc nm = do
defs <- getRef Defs
case lookupMap' nm defs of
Nothing => error fc "\{show nm} not in scope"
Just def => pure def
compileTerm : {{Ref2 Defs St}} Tm -> M CExp
compileTerm (Bnd _ k) = pure $ CBnd k
-- need to eta expand to arity
compileTerm t@(Ref fc nm@(QN _ tag)) = do
arity <- arityForName fc nm
defs <- getRef Defs
case arity of
-- we don't need to curry functions that take one argument
(S Z) => pure $ CRef nm
Z =>
case the (Maybe Def) $ lookupMap' nm defs of
Just (DCon EnumCon _ _) => pure $ CLit $ LString tag
Just (DCon ZeroCon _ _) => pure $ CLit $ LInt 0
Just (DCon SuccCon _ _) =>
pure $ CLam "x" $ CPrimOp "+" (CLit $ LInt 1) (CBnd 0)
_ => pure $ CRef nm
_ => apply (CRef nm) Nil Lin arity
compileTerm (Meta fc k) = error fc "Compiling meta \{show k}"
compileTerm (Lam _ nm _ _ t) = CLam nm <$> compileTerm t
compileTerm tm@(App _ _ _) = case funArgs tm of
(Meta _ k, args) => do
error (getFC tm) "Compiling an unsolved meta \{show tm}"
-- info (getFC tm) "Compiling an unsolved meta \{show tm}"
-- pure $ CApp (CRef "Meta\{show k}") Nil 0
(t@(Ref fc nm), args) => do
defs <- getRef Defs
args' <- traverse compileTerm args
arity <- arityForName fc nm
case the (Maybe Def) $ lookupMap' nm defs of
Just (DCon SuccCon _ _) => applySucc args'
_ => apply (CRef nm) args' Lin arity
(t, args) => do
debug $ \ _ => "apply other \{render 90 $ pprint Nil t}"
t' <- compileTerm t
args' <- traverse compileTerm args
apply t' args' Lin Z
where
applySucc : List CExp M CExp
applySucc Nil = pure $ CLam "x" $ CPrimOp "+" (CLit $ LInt 1) (CBnd 0)
applySucc (t :: Nil) = pure $ CPrimOp "+" (CLit $ LInt 1) t
applySucc _ = error emptyFC "overapplied Succ \{show tm}"
compileTerm (UU _) = pure $ CRef (QN Nil "U")
compileTerm (Pi _ nm icit rig t u) = do
t' <- compileTerm t
u' <- compileTerm u
pure $ CApp (CRef (QN Nil "PiType")) (t' :: CLam nm u' :: Nil) 0
compileTerm (Case fc t alts) = do
t' <- compileTerm t
alts' <- for alts $ \case
CaseDefault tm => CDefAlt <$> compileTerm tm
-- we use the base name for the tag, some primitives assume this
CaseCons qn@(QN ns nm) args tm => do
defs <- getRef Defs
def <- lookupDef emptyFC qn
case def of
DCon info _ _ => CConAlt nm info args <$> compileTerm tm
_ => error fc "\{show nm} is not constructor"
CaseLit lit tm => CLitAlt lit <$> compileTerm tm
pure $ CCase t' $ fancyCons t' alts'
where
numAltP : CAlt Bool
numAltP (CConAlt _ SuccCon _ _) = True
numAltP (CConAlt _ ZeroCon _ _) = True
numAltP _ = False
enumAlt : CAlt CAlt
enumAlt (CConAlt nm EnumCon args tm) = CLitAlt (LString nm) tm
enumAlt alt = alt
isInfo : ConInfo CAlt Bool
isInfo needle (CConAlt _ info _ _) = needle == info
isInfo _ _ = False
isDef : CAlt Bool
isDef (CDefAlt _) = True
isDef _ = False
getBody : CAlt CExp
getBody (CConAlt _ _ _ t) = t
getBody (CLitAlt _ t) = t
getBody (CDefAlt t) = t
doNumCon : CExp List CAlt List CAlt
doNumCon sc alts =
let zeroAlt = case find (isInfo ZeroCon) alts of
Just (CConAlt _ _ _ tm) => CLitAlt (LInt 0) tm :: Nil
Just tm => fatalError "ERROR zeroAlt mismatch \{debugStr tm}"
_ => case find isDef alts of
Just (CDefAlt tm) => CLitAlt (LInt 0) tm :: Nil
-- This happens if the zero alt is impossible
_ => Nil
in
let succAlt = case find (isInfo SuccCon) alts of
Just (CConAlt _ _ _ tm) => CDefAlt (CLet "x" (CPrimOp "-" sc (CLit $ LInt 1)) tm) :: Nil
Just tm => fatalError "ERROR succAlt mismatch \{debugStr tm}"
_ => case find isDef alts of
Just alt => alt :: Nil
_ => Nil
in zeroAlt ++ succAlt
fancyCons : CExp List CAlt List CAlt
fancyCons sc alts =
if any numAltP alts
then doNumCon sc alts
else map enumAlt alts
compileTerm (Lit _ lit) = pure $ CLit lit
compileTerm (Let _ nm t u) = do
t' <- compileTerm t
u' <- compileTerm u
pure $ CLet nm t' u'
compileTerm (LetRec _ nm _ t u) = do
t' <- compileTerm t
u' <- compileTerm u
pure $ CLetRec nm t' u'
compileTerm (Erased _) = pure CErased
compileFun : {{Ref2 Defs St}} Tm -> M CExp
compileFun tm = go tm Lin
where
go : Tm -> SnocList String -> M CExp
go (Lam _ nm _ _ t) acc = go t (acc :< nm)
go tm Lin = compileTerm tm
go tm args = CFun (args <>> Nil) <$> compileTerm tm
-- What are the Defs used for above? (Arity for name)
compileDCon : QName ConInfo Int CExp
compileDCon (QN _ nm) EnumCon 0 = CLit $ LString nm
compileDCon (QN _ nm) info 0 = CConstr nm Nil
compileDCon (QN _ nm) info arity =
let args = map (\k => "h\{show k}") (range 0 arity) in
CFun args $ CConstr nm $ map (\k => CBnd $ arity - k - 1) (range 0 arity)
-- probably want to drop the Ref2 when we can
defToCExp : {{Ref2 Defs St}} → (QName × Def) -> M (QName × CExp)
defToCExp (qn, Axiom) = pure $ (qn, CErased)
defToCExp (qn, DCon info arity _) = pure $ (qn, compileDCon qn info arity)
defToCExp (qn, TCon arity _) = pure $ (qn, compileDCon qn NormalCon arity)
defToCExp (qn, PrimTCon arity) = pure $ (qn, compileDCon qn NormalCon arity)
defToCExp (qn, PrimFn src _ deps) = pure $ (qn, CRaw src deps)
defToCExp (qn, Fn tm) = (_,_ qn) <$> compileFun tm