331 lines
7.0 KiB
Agda
331 lines
7.0 KiB
Agda
module Prelude
|
||
|
||
|
||
data Bool : U where
|
||
True False : Bool
|
||
|
||
not : Bool → Bool
|
||
not True = False
|
||
not False = True
|
||
|
||
-- In Idris, this is lazy in the second arg, we're not doing
|
||
-- magic laziness for now, it's messy
|
||
infixr 4 _||_
|
||
_||_ : Bool → Bool → Bool
|
||
True || _ = True
|
||
False || b = b
|
||
|
||
infixl 6 _==_
|
||
class Eq a where
|
||
_==_ : a → a → Bool
|
||
|
||
data Nat : U where
|
||
Z : Nat
|
||
S : Nat -> Nat
|
||
|
||
instance Eq Nat where
|
||
Z == Z = True
|
||
S n == S m = n == m
|
||
x == y = False
|
||
|
||
data Maybe : U -> U where
|
||
Just : {a : U} -> a -> Maybe a
|
||
Nothing : {a : U} -> Maybe a
|
||
|
||
fromMaybe : {a} → a → Maybe a → a
|
||
fromMaybe a Nothing = a
|
||
fromMaybe _ (Just a) = a
|
||
|
||
data Either : U -> U -> U where
|
||
Left : {0 a b : U} -> a -> Either a b
|
||
Right : {0 a b : U} -> b -> Either a b
|
||
|
||
infixr 7 _::_
|
||
data List : U -> U where
|
||
Nil : ∀ A. List A
|
||
_::_ : ∀ A. A → List A → List A
|
||
|
||
|
||
infixl 7 _:<_
|
||
data SnocList : U → U where
|
||
Lin : ∀ A. SnocList A
|
||
_:<_ : ∀ A. SnocList A → A → SnocList A
|
||
|
||
-- 'chips'
|
||
infixr 6 _<>>_
|
||
_<>>_ : ∀ a. SnocList a → List a → List a
|
||
Lin <>> ys = ys
|
||
(xs :< x) <>> ys = xs <>> x :: ys
|
||
|
||
-- TODO this is special cased in some languages, maybe for easier
|
||
-- inference? Figure out why.
|
||
-- Currently very noisy in generated code (if nothing else, optimize it out?)
|
||
infixr 0 _$_
|
||
_$_ : {a b : U} -> (a -> b) -> a -> b
|
||
f $ a = f a
|
||
|
||
infixr 8 _×_
|
||
infixr 2 _,_
|
||
data _×_ : U → U → U where
|
||
_,_ : ∀ A B. A → B → A × B
|
||
|
||
infixl 6 _<_
|
||
class Ord a where
|
||
_<_ : a → a → Bool
|
||
|
||
instance Ord Nat where
|
||
_ < Z = False
|
||
Z < S _ = True
|
||
S n < S m = n < m
|
||
|
||
-- Monad
|
||
|
||
class Monad (m : U → U) where
|
||
bind : {0 a b} → m a → (a → m b) → m b
|
||
pure : {0 a} → a → m a
|
||
|
||
infixl 1 _>>=_ _>>_
|
||
_>>=_ : {0 m} {{Monad m}} {0 a b} -> (m a) -> (a -> m b) -> m b
|
||
ma >>= amb = bind ma amb
|
||
|
||
_>>_ : {0 m} {{Monad m}} {0 a b} -> m a -> m b -> m b
|
||
ma >> mb = mb
|
||
|
||
-- Equality
|
||
|
||
infixl 1 _≡_
|
||
data _≡_ : {A : U} -> A -> A -> U where
|
||
Refl : {A : U} -> {a : A} -> a ≡ a
|
||
|
||
replace : {A : U} {a b : A} -> (P : A -> U) -> a ≡ b -> P a -> P b
|
||
replace p Refl x = x
|
||
|
||
cong : {A B : U} {a b : A} -> (f : A -> B) -> a ≡ b -> f a ≡ f b
|
||
|
||
sym : {A : U} -> {a b : A} -> a ≡ b -> b ≡ a
|
||
sym Refl = Refl
|
||
|
||
-- Functor
|
||
|
||
class Functor (m : U → U) where
|
||
map : {0 a b} → (a → b) → m a → m b
|
||
|
||
infixr 4 _<$>_
|
||
_<$>_ : {0 f} {{Functor f}} {0 a b} → (a → b) → f a → f b
|
||
f <$> ma = map f ma
|
||
|
||
instance Functor Maybe where
|
||
map f Nothing = Nothing
|
||
map f (Just a) = Just (f a)
|
||
|
||
instance Functor List where
|
||
map f Nil = Nil
|
||
map f (x :: xs) = f x :: map f xs
|
||
|
||
instance Functor SnocList where
|
||
map f Lin = Lin
|
||
map f (xs :< x) = map f xs :< f x
|
||
|
||
-- TODO this probably should depend on / entail Functor
|
||
infixl 3 _<*>_
|
||
class Applicative (f : U → U) where
|
||
-- appIsFunctor : Functor f
|
||
return : {0 a} → a → f a
|
||
_<*>_ : {0 a b} -> f (a → b) → f a → f b
|
||
|
||
infixr 2 _<|>_
|
||
class Alternative (m : U → U) where
|
||
_<|>_ : {0 a} → m a → m a → m a
|
||
|
||
instance Alternative Maybe where
|
||
Nothing <|> x = x
|
||
Just x <|> _ = Just x
|
||
|
||
-- Semigroup
|
||
|
||
infixl 8 _<+>_
|
||
class Semigroup a where
|
||
_<+>_ : a → a → a
|
||
|
||
infixl 7 _+_
|
||
class Add a where
|
||
_+_ : a → a → a
|
||
|
||
infixl 8 _*_
|
||
class Mul a where
|
||
_*_ : a → a → a
|
||
|
||
instance Add Nat where
|
||
Z + m = m
|
||
S n + m = S (n + m)
|
||
|
||
instance Mul Nat where
|
||
Z * _ = Z
|
||
S n * m = m + n * m
|
||
|
||
|
||
infixl 7 _-_
|
||
class Sub a where
|
||
_-_ : a → a → a
|
||
|
||
instance Sub Nat where
|
||
Z - m = Z
|
||
n - Z = n
|
||
S n - S m = n - m
|
||
|
||
infixr 7 _++_
|
||
class Concat a where
|
||
_++_ : a → a → a
|
||
|
||
ptype String
|
||
ptype Int
|
||
ptype Char
|
||
|
||
-- probably want to switch to Int or implement magic Nat
|
||
pfunc length : String → Nat := `(s) => {
|
||
let rval = Z
|
||
for (let i = 0; i < s.length; s++) rval = S(rval)
|
||
return rval
|
||
}`
|
||
|
||
pfunc sconcat : String → String → String := `(x,y) => x + y`
|
||
instance Concat String where
|
||
_++_ = sconcat
|
||
|
||
data Unit : U where
|
||
MkUnit : Unit
|
||
|
||
ptype Array : U → U
|
||
pfunc listToArray : {a : U} -> List a -> Array a := `
|
||
(a, l) => {
|
||
let rval = []
|
||
while (l.tag !== 'Nil') {
|
||
rval.push(l.h1)
|
||
l = l.h2
|
||
}
|
||
return rval
|
||
}
|
||
`
|
||
|
||
pfunc alen : {0 a : U} -> Array a -> Int := `(a,arr) => arr.length`
|
||
pfunc aget : {0 a : U} -> Array a -> Int -> a := `(a, arr, ix) => arr[ix]`
|
||
pfunc aempty : {0 a : U} -> Unit -> Array a := `() => []`
|
||
|
||
pfunc arrayToList : {0 a} → Array a → List a := `(a,arr) => {
|
||
let rval = Nil(a)
|
||
for (let i = arr.length - 1;i >= 0; i--) {
|
||
rval = _$3A$3A_(a, arr[i], rval)
|
||
}
|
||
return rval
|
||
}`
|
||
|
||
|
||
|
||
-- for now I'll run this in JS
|
||
pfunc lines : String → List String := `(s) => arrayToList(s.split('\n'))`
|
||
|
||
pfunc p_strHead : (s : String) -> Char := `(s) => s[0]`
|
||
pfunc p_strTail : (s : String) -> String := `(s) => s[0]`
|
||
|
||
pfunc trim : String -> String := `s => s.trim()`
|
||
pfunc split : String -> String -> List String := `(s, by) => {
|
||
let parts = s.split(by)
|
||
let rval = Nil(String)
|
||
parts.reverse()
|
||
parts.forEach(p => { rval = _$3A$3A_(List(String), p, rval) })
|
||
return rval
|
||
}`
|
||
|
||
pfunc slen : String -> Int := `s => s.length`
|
||
pfunc sindex : String -> Int -> Char := `(s,i) => s[i]`
|
||
|
||
-- TODO represent Nat as number at runtime
|
||
pfunc natToInt : Nat -> Int := `(n) => {
|
||
let rval = 0
|
||
while (n.tag === 'S') {
|
||
n = n.h0
|
||
rval++
|
||
}
|
||
return rval
|
||
}`
|
||
|
||
pfunc fastConcat : List String → String := `(xs) => listToArray(undefined, xs).join('')`
|
||
pfunc replicate : Nat -> Char → String := `(n,c) => c.repeat(natToInt(n))`
|
||
|
||
-- I don't want to use an empty type because it would be a proof of void
|
||
ptype World
|
||
|
||
data IORes : U -> U where
|
||
MkIORes : {a : U} -> a -> World -> IORes a
|
||
|
||
IO : U -> U
|
||
IO a = World -> IORes a
|
||
|
||
instance Monad IO where
|
||
bind ma mab = \ w => case ma w of
|
||
MkIORes a w => mab a w
|
||
pure a = \ w => MkIORes a w
|
||
|
||
pfunc putStrLn uses (MkIORes MkUnit) : String -> IO Unit := `(s) => (w) => {
|
||
console.log(s)
|
||
return MkIORes(undefined,MkUnit,w)
|
||
}`
|
||
|
||
pfunc showInt : Int -> String := `(i) => String(i)`
|
||
|
||
class Show a where
|
||
show : a → String
|
||
|
||
instance Show String where
|
||
show a = a
|
||
|
||
instance Show Int where
|
||
show = showInt
|
||
|
||
pfunc ord : Char -> Int := `(c) => c.charCodeAt(0)`
|
||
|
||
infix 6 _<=_
|
||
pfunc _<=_ uses (True False) : Int -> Int -> Bool := `(x,y) => (x <= y) ? True : False`
|
||
|
||
pfunc unpack : String -> List Char
|
||
:= `(s) => {
|
||
let acc = Nil(Char)
|
||
for (let i = s.length - 1; 0 <= i; i--) acc = _$3A$3A_(Char, s[i], acc)
|
||
return acc
|
||
}`
|
||
|
||
|
||
|
||
foldl : {A B : U} -> (B -> A -> B) -> B -> List A -> B
|
||
foldl f acc Nil = acc
|
||
foldl f acc (x :: xs) = foldl f (f acc x) xs
|
||
|
||
infixl 9 _∘_
|
||
_∘_ : {A B C : U} -> (B -> C) -> (A -> B) -> A -> C
|
||
(f ∘ g) x = f (g x)
|
||
|
||
|
||
pfunc addInt : Int → Int → Int := `(x,y) => x + y`
|
||
pfunc mulInt : Int → Int → Int := `(x,y) => x * y`
|
||
pfunc subInt : Int → Int → Int := `(x,y) => x - y`
|
||
pfunc ltInt uses (True False) : Int → Int → Bool := `(x,y) => x < y ? True : False`
|
||
|
||
instance Mul Int where
|
||
x * y = mulInt x y
|
||
|
||
instance Add Int where
|
||
x + y = addInt x y
|
||
|
||
instance Sub Int where
|
||
x - y = subInt x y
|
||
|
||
instance Ord Int where
|
||
x < y = ltInt x y
|
||
|
||
printLn : {a} {{Show a}} → a → IO Unit
|
||
printLn a = putStrLn $ show a
|
||
|
||
-- opaque JSObject
|
||
ptype JSObject
|
||
|