247 lines
7.0 KiB
Idris
247 lines
7.0 KiB
Idris
-- maybe watch https://www.youtube.com/watch?v=3gef0_NFz8Q
|
|
-- or drop the indices for now.
|
|
|
|
-- The Control.App requires a patched idris. :(
|
|
|
|
module Lib.TT
|
|
-- For SourcePos
|
|
import Lib.Parser.Impl
|
|
import Data.Fin
|
|
import Data.Vect
|
|
|
|
public export
|
|
Name : Type
|
|
Name = String
|
|
|
|
-- Trying to do well-scoped here, so the indices are proven.
|
|
-- RIP out the indices
|
|
|
|
public export
|
|
data Icit = Implicit | Explicit
|
|
|
|
%name Icit icit
|
|
|
|
public export
|
|
data Tm : Nat -> Type where
|
|
Bnd : Fin n -> Tm n
|
|
Ref : String -> Tm n
|
|
Lam : Name -> Icit -> Tm (S n) -> Tm n
|
|
App : Tm n -> Tm n -> Tm n
|
|
U : Tm n
|
|
Pi : Name -> Icit -> Tm n -> Tm (S n) -> Tm n
|
|
Let : Name -> Icit -> Tm n -> Tm n -> Tm (S n) -> Tm n
|
|
|
|
%name Tm t, u, v
|
|
|
|
-- TODO derive
|
|
export
|
|
Eq Icit where
|
|
Implicit == Implicit = True
|
|
Explicit == Explicit = True
|
|
_ == _ = False
|
|
|
|
||| Eq on Tm. We've got deBruijn indices, so I'm not comparing names
|
|
export
|
|
Eq (Tm n) where
|
|
-- (Local x) == (Local y) = x == y
|
|
(Bnd x) == (Bnd y) = x == y
|
|
(Ref x) == (Ref y) = x == y
|
|
(Lam n icit t) == (Lam n' icit' t') = icit == icit' && t == t'
|
|
(App t u) == App t' u' = t == t' && u == u'
|
|
U == U = True
|
|
(Pi n icit t u) == (Pi n' icit' t' u') = icit == icit' && t == t' && u == u'
|
|
(Let n icit t u v) == (Let n' icit' t' u' v') = t == t' && u == u' && v == v'
|
|
_ == _ = False
|
|
|
|
-- public export
|
|
-- data Closure : Nat -> Type
|
|
data Val : Nat -> Type
|
|
|
|
public export
|
|
0 Closure : Nat -> Type
|
|
|
|
-- IS/TypeTheory.idr is calling this a Kripke function space
|
|
-- Yaffle, IS/TypeTheory use a function here.
|
|
-- Kovacs, Idris use Env and Tm
|
|
|
|
-- in cctt kovacs refers to this as defunctionalization vs HOAS
|
|
-- https://github.com/AndrasKovacs/cctt/blob/main/README.md#defunctionalization
|
|
|
|
|
|
-- Yaffle is vars -> vars here
|
|
|
|
|
|
Closure n = Val (S n) -> Val n
|
|
|
|
public export
|
|
data Val : Nat -> Type where
|
|
-- This will be local / flex with spine.
|
|
VVar : Fin n -> Val n
|
|
VRef : String -> Val n
|
|
VApp : Val n -> Lazy (Val n) -> Val n
|
|
VLam : Name -> Icit -> Closure n -> Val n
|
|
VPi : Name -> Icit -> Lazy (Val n) -> Closure n -> Val n
|
|
VU : Val n
|
|
|
|
||| LocalEnv free vars
|
|
public export
|
|
LocalEnv : Nat -> Nat -> Type
|
|
LocalEnv k n = Vect k (Val n)
|
|
|
|
public export
|
|
Env : Nat -> Type
|
|
Env n = Vect n (Val n)
|
|
|
|
export
|
|
eval : LocalEnv k n -> Env n -> Tm (n + k) -> Val n
|
|
|
|
thinVal : Val k -> Val (S k)
|
|
thinVal (VVar x) = VVar (shift 1 x)
|
|
thinVal (VRef str) = VRef str
|
|
thinVal (VApp x y) = VApp (thinVal x) (thinVal y)
|
|
thinVal (VLam str icit f) = VLam str icit (believe_me f) -- FIXME
|
|
thinVal (VPi str icit x f) = VPi str icit (thinVal x) (believe_me f)
|
|
thinVal VU = VU
|
|
|
|
|
|
export
|
|
vapp : Val n -> Val n -> Val n
|
|
vapp (VLam _ icit t) u = t (thinVal u)
|
|
vapp t u = VApp t u
|
|
|
|
-- thinVal : {e : Nat} -> Val k -> Val (e + k)
|
|
-- thinVal (VVar x) = VVar (shift _ x)
|
|
-- thinVal (VRef str) = VRef str
|
|
-- thinVal (VApp x y) = VApp (thinVal x) (thinVal y)
|
|
-- thinVal (VLam str icit f) = VLam str icit
|
|
-- (\g, v => rewrite plusAssociative g e k in f (g + e) (rewrite sym $ plusAssociative g e k in v))
|
|
-- thinVal (VPi str icit x f) = VPi str icit (thinVal {e} x)
|
|
-- (\g, v => rewrite plusAssociative g e k in f (g + e) (rewrite sym $ plusAssociative g e k in v))
|
|
-- thinVal VU = VU
|
|
|
|
|
|
|
|
bind : Val n -> Env n -> Env (S n)
|
|
bind v env = thinVal v :: map thinVal env
|
|
|
|
-- so here we have LocalEnv free vars in Yaffle
|
|
|
|
eval locs env (Ref x) = VRef x
|
|
eval locs env (App t u) = vapp (eval locs env t) (eval locs env u)
|
|
eval locs env U = VU
|
|
-- yaffle breaks out binder
|
|
eval locs env (Lam x icit t) = VLam x icit (\u => (u :: locs) env (rewrite sym $ plusSuccRightSucc n k in t))
|
|
eval locs env (Pi x icit a b) = VPi x icit (eval locs env a) (\u => eval (u :: locs) env (rewrite sym $ plusSuccRightSucc n k in b))
|
|
-- This one we need to make
|
|
eval locs env (Let x icit ty t u) = eval (eval locs env t :: locs) env (rewrite sym $ plusSuccRightSucc n k in u)
|
|
eval locs env (Bnd i) = index i ?hole -- env
|
|
|
|
vfresh : (l : Nat) -> Val (S l)
|
|
vfresh l = VVar last
|
|
|
|
export
|
|
quote : (k : Nat) -> Val k -> Tm k
|
|
quote l (VVar k) = Bnd (complement k) -- level to index
|
|
quote l (VApp t u) = App (quote l t) (quote l u)
|
|
-- so this one is calling the kripke on [x] and a fresh var
|
|
quote l (VLam x icit t) = Lam x icit (quote (S l) (believe_me $ t (vfresh l))) -- that one is too big
|
|
quote l (VPi x icit a b) = Pi x icit (quote l a) (quote (S l) (believe_me $ b $ vfresh l))
|
|
quote l VU = U
|
|
quote _ (VRef n) = Ref n
|
|
|
|
-- vars -> vars -> vars in yaffle
|
|
export
|
|
nf : {n : Nat} -> Env n -> Tm n -> Tm n
|
|
nf env t = quote n (eval [] env (rewrite plusZeroRightNeutral n in t))
|
|
|
|
public export
|
|
conv : (lvl : Nat) -> Val n -> Val n -> Bool
|
|
|
|
data BD = Bound | Defined
|
|
|
|
public export
|
|
Types : Nat -> Type
|
|
Types n = Vect n (Name, Lazy (Val n))
|
|
|
|
|
|
|
|
-- REVIEW indices
|
|
public export
|
|
record Context (n : Nat) where
|
|
constructor MkCtx
|
|
|
|
-- These are values, they'll be the length of the environment
|
|
env : Env n -- Vect n (Val f)
|
|
|
|
-- fine for now, consider a map later
|
|
types : Vect n (String, Val n)
|
|
pos : SourcePos
|
|
|
|
-- data Env : (tm : SnocList Name -> Type) -> SnocList Name -> Type where
|
|
|
|
-- Kovacs Small-TT has locals and globals, lets do that.
|
|
-- Still need to sort out the indices - one or two on env?
|
|
|
|
||| add a binding to environment
|
|
extend : { n : Nat} -> Context n -> String -> Val n -> Context (S n)
|
|
extend (MkCtx env types pos) name ty with (length env)
|
|
_ | l =
|
|
|
|
let types' = Data.Vect.(::) (name, thinVal ty) (map (map thinVal) types) in
|
|
let l' : Fin (S n) := last in
|
|
MkCtx {n=S n} (VVar l' :: map thinVal env) types' pos
|
|
-- ?hole_0 -- { env := (Val (length env.(Context env types pos)) :: (Context env types pos).env), types := (n, ty) :: (Context env types pos).types } (Context env types pos)
|
|
|
|
|
|
-- weirich has 'hints' to store the claims before the def is seen/checked
|
|
-- saying it is unsafe. afterwards they are mixed into the context.
|
|
-- idris essentially leaves holes, filled in later, for undefined claims
|
|
-- Is it ok to leaving them in there (if they pass checkType) as long as
|
|
-- we don't register the def if it fails checking?
|
|
|
|
-- shoot, I have another of these in Check.idr
|
|
|
|
|
|
-- -- public export
|
|
-- record Ctx (n : Nat) where
|
|
-- constructor MkCtx
|
|
-- env : Env k n -- for eval
|
|
-- types : Types n -- name lookup, prettyprint
|
|
-- bds : Vect n BD -- meta creation
|
|
-- lvl : Nat -- This is n, do we need it?
|
|
-- -- Kovacs and Weirich use a position node, Idris has FC
|
|
-- pos : SourcePos
|
|
|
|
-- %name Ctx ctx
|
|
|
|
-- public export
|
|
-- emptyCtx : Ctx Z
|
|
-- emptyCtx = MkCtx {k=0} [] [] [] 0 (0,0)
|
|
|
|
-- find out how pi-forall treats binders
|
|
-- Vars are unbound TName
|
|
|
|
-- ezoo
|
|
-- Tm has Ix
|
|
-- Val has Lvl
|
|
|
|
-- by the time we hit ezoo 5/6, there is a Map string -> (Lvl, Type) for name lookup.
|
|
|
|
-- smalltt
|
|
|
|
|
|
-- idris
|
|
|
|
|
|
|
|
-- public export
|
|
-- bindCtx : Name -> Lazy (Val (zz + n)) -> Ctx n -> Ctx (S n)
|
|
-- bindCtx x a (MkCtx env types bds l pos) =
|
|
-- MkCtx (VVar l :: env) ((x,a) :: map (map thinVal) types) (Bound :: bds) (l+1) pos
|
|
|
|
-- public export
|
|
-- define : Name -> Val n -> Lazy (Val n) -> Ctx n -> Ctx (S n)
|
|
-- define x v ty (MkCtx env types bds l pos) =
|
|
-- MkCtx (v :: env) ((x,ty) :: map (map thinVal) types) (Defined :: bds) (l + 1) pos
|
|
|