925 lines
23 KiB
Agda
925 lines
23 KiB
Agda
module Prelude
|
||
|
||
id : ∀ a. a → a
|
||
id x = x
|
||
|
||
the : (a : U) → a → a
|
||
the _ a = a
|
||
|
||
const : ∀ a b. a → b → a
|
||
const a b = a
|
||
|
||
data Unit = MkUnit
|
||
-- False first so it ends up being false
|
||
data Bool = False | True
|
||
|
||
not : Bool → Bool
|
||
not True = False
|
||
not False = True
|
||
|
||
-- In Idris, this is lazy in the second arg, we're not doing
|
||
-- magic laziness for now, it's messy
|
||
infixr 4 _||_
|
||
_||_ : Bool → Bool → Bool
|
||
True || _ = True
|
||
False || b = b
|
||
|
||
infixr 5 _&&_
|
||
_&&_ : Bool → Bool → Bool
|
||
False && b = False
|
||
True && b = b
|
||
|
||
infixl 6 _==_
|
||
class Eq a where
|
||
_==_ : a → a → Bool
|
||
|
||
infixl 6 _/=_
|
||
_/=_ : ∀ a. {{Eq a}} → a → a → Bool
|
||
a /= b = not (a == b)
|
||
|
||
data Nat = Z | S Nat
|
||
|
||
pred : Nat → Nat
|
||
pred Z = Z
|
||
pred (S k) = k
|
||
|
||
instance Eq Nat where
|
||
Z == Z = True
|
||
S n == S m = n == m
|
||
x == y = False
|
||
|
||
|
||
data Maybe a = Just a | Nothing
|
||
|
||
fromMaybe : ∀ a. a → Maybe a → a
|
||
fromMaybe a Nothing = a
|
||
fromMaybe _ (Just a) = a
|
||
|
||
maybe : ∀ a b. b → (a → b) → Maybe a → b
|
||
maybe def f (Just a) = f a
|
||
maybe def f Nothing = def
|
||
|
||
data Either a b = Left a | Right b
|
||
|
||
infixr 7 _::_
|
||
data List a = Nil | a :: List a
|
||
|
||
length : ∀ a. List a → Nat
|
||
length Nil = Z
|
||
length (x :: xs) = S (length xs)
|
||
|
||
|
||
infixl 7 _:<_
|
||
data SnocList a = Lin | SnocList a :< a
|
||
|
||
-- 'chips'
|
||
infixr 6 _<>>_ _<><_
|
||
_<>>_ : ∀ a. SnocList a → List a → List a
|
||
Lin <>> ys = ys
|
||
(xs :< x) <>> ys = xs <>> x :: ys
|
||
|
||
_<><_ : ∀ a. SnocList a → List a → SnocList a
|
||
xs <>< Nil = xs
|
||
xs <>< (y :: ys) = (xs :< y) <>< ys
|
||
|
||
-- This is now handled by the parser, and LHS becomes `f a`.
|
||
-- infixr 0 _$_
|
||
-- _$_ : ∀ a b. (a → b) → a → b
|
||
-- f $ a = f a
|
||
|
||
infixr 8 _×_
|
||
infixr 2 _,_
|
||
data a × b = (a,b)
|
||
|
||
fst : ∀ a b. a × b → a
|
||
fst (a,b) = a
|
||
|
||
snd : ∀ a b. a × b → b
|
||
snd (a,b) = b
|
||
-- Monad
|
||
|
||
class Monad (m : U → U) where
|
||
bind : ∀ a b. m a → (a → m b) → m b
|
||
pure : ∀ a. a → m a
|
||
|
||
infixl 1 _>>=_ _>>_
|
||
_>>=_ : ∀ m a b. {{Monad m}} → (m a) → (a → m b) → m b
|
||
ma >>= amb = bind ma amb
|
||
|
||
_>>_ : ∀ m a b. {{Monad m}} → m a → m b → m b
|
||
ma >> mb = bind ma (\ _ => mb)
|
||
|
||
join : ∀ m a. {{Monad m}} → m (m a) → m a
|
||
join mma = mma >>= id
|
||
|
||
-- Equality
|
||
|
||
infixl 1 _≡_
|
||
data _≡_ : ∀ A. A → A → U where
|
||
Refl : ∀ A. {0 a : A} → a ≡ a
|
||
|
||
replace : ∀ A. {0 a b : A} → (P : A → U) → a ≡ b → P a → P b
|
||
replace p Refl x = x
|
||
|
||
cong : ∀ A B. {0 a b : A} → (f : A → B) → a ≡ b → f a ≡ f b
|
||
cong f Refl = Refl
|
||
|
||
sym : ∀ A. {0 a b : A} → a ≡ b → b ≡ a
|
||
sym Refl = Refl
|
||
|
||
data Void : U where
|
||
|
||
¬ : U → U
|
||
¬ x = x → Void
|
||
|
||
data Dec : U → U where
|
||
Yes : ∀ prop. (prf : prop) → Dec prop
|
||
No : ∀ prop. (contra : ¬ prop) → Dec prop
|
||
|
||
class DecEq t where
|
||
decEq : (x₁ : t) → (x₂ : t) → Dec (x₁ ≡ x₂)
|
||
|
||
|
||
-- Functor
|
||
|
||
class Functor (m : U → U) where
|
||
map : ∀ a b. (a → b) → m a → m b
|
||
|
||
infixr 4 _<$>_ _<$_
|
||
_<$>_ : ∀ f. {{Functor f}} {0 a b} → (a → b) → f a → f b
|
||
f <$> ma = map f ma
|
||
|
||
_<$_ : ∀ f a b. {{Functor f}} → b → f a → f b
|
||
a <$ b = const a <$> b
|
||
|
||
instance Functor Maybe where
|
||
map f Nothing = Nothing
|
||
map f (Just a) = Just (f a)
|
||
|
||
reverse : ∀ a. List a → List a
|
||
reverse {a} = go Nil
|
||
where
|
||
go : List a → List a → List a
|
||
go acc Nil = acc
|
||
go acc (x :: xs) = go (x :: acc) xs
|
||
|
||
instance Functor List where
|
||
map f xs = go f xs Nil
|
||
where
|
||
go : ∀ a b. (a → b) → List a → List b → List b
|
||
go f Nil ys = reverse ys
|
||
go f (x :: xs) ys = go f xs (f x :: ys)
|
||
-- map f Nil = Nil
|
||
-- map f (x :: xs) = f x :: map f xs
|
||
|
||
instance Functor SnocList where
|
||
map f Lin = Lin
|
||
map f (xs :< x) = map f xs :< f x
|
||
|
||
-- TODO this probably should depend on / entail Functor
|
||
infixl 3 _<*>_ _<*_ _*>_
|
||
class Applicative (f : U → U) where
|
||
-- appIsFunctor : Functor f
|
||
return : ∀ a. a → f a
|
||
_<*>_ : ∀ a b. f (a → b) → f a → f b
|
||
|
||
|
||
_<*_ : ∀ f a b. {{Applicative f}} → f a → f b → f a
|
||
fa <* fb = return const <*> fa <*> fb
|
||
|
||
_*>_ : ∀ f a b. {{Functor f}} {{Applicative f}} → f a → f b → f b
|
||
a *> b = map (const id) a <*> b
|
||
|
||
|
||
class Traversable (t : U → U) where
|
||
traverse : ∀ f a b. {{Applicative f}} → (a → f b) → t a → f (t b)
|
||
|
||
instance Traversable List where
|
||
traverse f Nil = return Nil
|
||
traverse f (x :: xs) = return _::_ <*> f x <*> traverse f xs
|
||
|
||
traverse_ : ∀ t f a b. {{Traversable t}} {{Applicative f}} → (a → f b) → t a → f Unit
|
||
traverse_ f xs = return (const MkUnit) <*> traverse f xs
|
||
|
||
for : {0 t : U → U} {0 f : U → U} → {{Traversable t}} {{appf : Applicative f}} → {0 a : U} → {0 b : U} → t a → (a → f b) → f (t b)
|
||
for stuff fun = traverse fun stuff
|
||
|
||
for_ : {0 t : U → U} {0 f : U → U} → {{Traversable t}} {{appf : Applicative f}} → {0 a : U} → {0 b : U} → t a → (a → f b) → f Unit
|
||
for_ stuff fun = return (const MkUnit) <*> traverse fun stuff
|
||
|
||
instance Applicative Maybe where
|
||
return a = Just a
|
||
Nothing <*> _ = Nothing
|
||
Just f <*> fa = f <$> fa
|
||
|
||
infixr 2 _<|>_
|
||
class Alternative (m : U → U) where
|
||
_<|>_ : {0 a} → m a → m a → m a
|
||
|
||
instance Alternative Maybe where
|
||
Nothing <|> x = x
|
||
Just x <|> _ = Just x
|
||
|
||
-- Semigroup
|
||
|
||
infixl 8 _<+>_
|
||
class Semigroup a where
|
||
_<+>_ : a → a → a
|
||
|
||
infixl 7 _+_
|
||
class Add a where
|
||
_+_ : a → a → a
|
||
|
||
infixl 8 _*_ _/_
|
||
class Mul a where
|
||
_*_ : a → a → a
|
||
|
||
class Div a where
|
||
_/_ : a → a → a
|
||
|
||
instance Add Nat where
|
||
Z + m = m
|
||
S n + m = S (n + m)
|
||
|
||
instance Mul Nat where
|
||
Z * _ = Z
|
||
S n * m = m + n * m
|
||
|
||
pfunc mod : Int → Int → Int := `(a,b) => a % b`
|
||
|
||
infixl 7 _-_
|
||
class Sub a where
|
||
_-_ : a → a → a
|
||
|
||
instance Sub Nat where
|
||
Z - m = Z
|
||
n - Z = n
|
||
S n - S m = n - m
|
||
|
||
infixr 7 _++_
|
||
class Concat a where
|
||
_++_ : a → a → a
|
||
|
||
pfunc addString : String → String → String := `(x,y) => x + y`
|
||
instance Concat String where
|
||
_++_ = addString
|
||
|
||
|
||
pfunc jsEq uses (True False) : ∀ a. a → a → Bool := `(_, a, b) => a == b ? Prelude_True : Prelude_False`
|
||
pfunc jsLT uses (True False) : ∀ a. a → a → Bool := `(_, a, b) => a < b ? Prelude_True : Prelude_False`
|
||
|
||
pfunc jsShow : ∀ a . a → String := `(_,a) => ''+a`
|
||
instance Eq Int where
|
||
a == b = jsEq a b
|
||
|
||
instance Eq String where
|
||
a == b = jsEq a b
|
||
|
||
instance Eq Char where
|
||
a == b = jsEq a b
|
||
|
||
|
||
|
||
ptype Array : U → U
|
||
pfunc listToArray : ∀ a. List a → Array a := `
|
||
(a, l) => {
|
||
let rval = []
|
||
while (l.tag !== 'Nil' && l.tag) {
|
||
rval.push(l.h1)
|
||
l = l.h2
|
||
}
|
||
return rval
|
||
}
|
||
`
|
||
|
||
pfunc alen : ∀ a. Array a → Int := `(a,arr) => arr.length`
|
||
pfunc aget : ∀ a. Array a → Int → a := `(a, arr, ix) => arr[ix]`
|
||
pfunc aempty : ∀ a. Unit → Array a := `() => []`
|
||
|
||
pfunc arrayToList uses (Nil _::_) : ∀ a. Array a → List a := `(a,arr) => {
|
||
let rval = Prelude_Nil()
|
||
for (let i = arr.length - 1;i >= 0; i--) {
|
||
rval = Prelude__$3A$3A_(arr[i], rval)
|
||
}
|
||
return rval
|
||
}`
|
||
|
||
|
||
|
||
-- for now I'll run this in JS
|
||
pfunc lines uses (arrayToList) : String → List String := `(s) => Prelude_arrayToList(null,s.split('\n'))`
|
||
|
||
pfunc p_strHead : (s : String) → Char := `(s) => s[0]`
|
||
pfunc p_strTail : (s : String) → String := `(s) => s[0]`
|
||
|
||
pfunc trim : String → String := `s => s.trim()`
|
||
pfunc split uses (Nil _::_) : String → String → List String := `(s, by) => {
|
||
let parts = s.split(by)
|
||
let rval = Prelude_Nil()
|
||
parts.reverse()
|
||
parts.forEach(p => { rval = Prelude__$3A$3A_(p, rval) })
|
||
return rval
|
||
}`
|
||
|
||
pfunc slen : String → Int := `s => s.length`
|
||
pfunc sindex : String → Int → Char := `(s,i) => s[i]`
|
||
|
||
pfunc natToInt : Nat → Int := `(n) => n`
|
||
pfunc intToNat : Int → Nat := `(n) => n>0?n:0`
|
||
|
||
pfunc fastConcat uses (listToArray) : List String → String := `(xs) => Prelude_listToArray(null, xs).join('')`
|
||
pfunc replicate uses (natToInt) : Nat → Char → String := `(n,c) => c.repeat(Prelude_natToInt(n))`
|
||
|
||
-- TODO this should be replicate and the chars thing should have a different name
|
||
replicate' : ∀ a. Nat → a → List a
|
||
replicate' {a} n x = go n Nil
|
||
where
|
||
go : Nat → List a → List a
|
||
go Z xs = xs
|
||
go (S k) xs = go k (x :: xs)
|
||
|
||
-- I don't want to use an empty type because it would be a proof of void
|
||
ptype World
|
||
|
||
data IORes a = MkIORes a World
|
||
|
||
IO : U → U
|
||
IO a = World → IORes a
|
||
|
||
instance Monad IO where
|
||
bind ma mab = \ w => case ma w of
|
||
MkIORes a w => mab a w
|
||
pure = MkIORes
|
||
|
||
bindList : ∀ a b. List a → (a → List b) → List b
|
||
|
||
-- Tail recursive, but may be hard to write proofs?
|
||
instance ∀ a. Concat (List a) where
|
||
xs ++ ys = go (reverse xs) ys
|
||
where
|
||
go : ∀ a. List a → List a → List a
|
||
go Nil ys = ys
|
||
go (x :: xs) ys = go xs (x :: ys)
|
||
|
||
|
||
instance Monad List where
|
||
pure a = a :: Nil
|
||
bind Nil amb = Nil
|
||
bind (x :: xs) amb = amb x ++ bind xs amb
|
||
|
||
|
||
|
||
-- This is traverse, but we haven't defined Traversable yet
|
||
mapA : ∀ m. {{Applicative m}} {0 a b} → (a → m b) → List a → m (List b)
|
||
mapA f Nil = return Nil
|
||
mapA f (x :: xs) = return _::_ <*> f x <*> mapA f xs
|
||
|
||
|
||
mapM : ∀ m. {{Monad m}} {0 a b} → (a → m b) → List a → m (List b)
|
||
mapM f Nil = pure Nil
|
||
mapM f (x :: xs) = do
|
||
b <- f x
|
||
bs <- mapM f xs
|
||
pure (b :: bs)
|
||
|
||
class HasIO (m : U → U) where
|
||
liftIO : ∀ a. IO a → m a
|
||
|
||
instance HasIO IO where
|
||
liftIO a = a
|
||
|
||
pfunc primPutStrLn uses (MkIORes MkUnit) : String → IO Unit := `(s) => (w) => {
|
||
console.log(s)
|
||
return Prelude_MkIORes(Prelude_MkUnit,w)
|
||
}`
|
||
|
||
putStrLn : ∀ io. {{HasIO io}} → String → io Unit
|
||
putStrLn s = liftIO (primPutStrLn s)
|
||
|
||
pfunc showInt : Int → String := `(i) => String(i)`
|
||
|
||
class Show a where
|
||
show : a → String
|
||
|
||
instance Show String where
|
||
show a = a
|
||
|
||
instance Show Int where
|
||
show = showInt
|
||
|
||
instance Show Bool where
|
||
show True = "true"
|
||
show False = "false"
|
||
|
||
pfunc ord : Char → Int := `(c) => c.charCodeAt(0)`
|
||
pfunc chr : Int → Char := `(c) => String.fromCharCode(c)`
|
||
|
||
pfunc unpack uses (Nil _::_) : String → List Char
|
||
:= `(s) => {
|
||
let acc = Prelude_Nil()
|
||
for (let i = s.length - 1; 0 <= i; i--) acc = Prelude__$3A$3A_(s[i], acc)
|
||
return acc
|
||
}`
|
||
|
||
pfunc pack : List Char → String := `(cs) => {
|
||
let rval = ''
|
||
while (cs.tag === '_::_' || cs.tag === 1) {
|
||
rval += cs.h1
|
||
cs = cs.h2
|
||
}
|
||
return rval
|
||
}
|
||
`
|
||
|
||
pfunc debugStr uses (natToInt listToArray) : ∀ a. a → String := `(_, obj) => {
|
||
const go = (obj) => {
|
||
if (obj === null) return "_"
|
||
if (typeof obj == 'bigint') return ''+obj
|
||
if (obj.tag === '_,_') {
|
||
let rval = '('
|
||
while (obj?.tag === '_,_') {
|
||
rval += go(obj.h2) + ', '
|
||
obj = obj.h3
|
||
}
|
||
return rval + go(obj) + ')'
|
||
}
|
||
if (obj?.tag === '_::_' || obj?.tag === 'Nil') {
|
||
let stuff = Prelude_listToArray(null,obj)
|
||
return '['+(stuff.map(go).join(', '))+']'
|
||
}
|
||
if (obj instanceof Array) {
|
||
return 'io['+(obj.map(go).join(', '))+']'
|
||
}
|
||
if (obj?.tag === 'S' || obj?.tag === 'Z') {
|
||
return ''+Prelude_natToInt(obj)
|
||
} else if (obj?.tag) {
|
||
let rval = '('+obj.tag
|
||
for(let i=0;;i++) {
|
||
let key = 'h'+i
|
||
if (!(key in obj)) break
|
||
rval += ' ' + go(obj[key])
|
||
}
|
||
return rval+')'
|
||
} else {
|
||
return JSON.stringify(obj)
|
||
}
|
||
}
|
||
return go(obj)
|
||
}`
|
||
|
||
debugLog : ∀ a. a → IO Unit
|
||
debugLog a = putStrLn (debugStr a)
|
||
|
||
pfunc stringToInt : String → Int := `(s) => {
|
||
let rval = Number(s)
|
||
if (isNaN(rval)) throw new Error(s + " is NaN")
|
||
return rval
|
||
}`
|
||
|
||
-- TODO - add Foldable
|
||
|
||
foldl : ∀ A B. (B → A → B) → B → List A → B
|
||
foldl f acc Nil = acc
|
||
foldl f acc (x :: xs) = foldl f (f acc x) xs
|
||
|
||
foldr : ∀ a b. (a → b → b) → b → List a → b
|
||
foldr f b Nil = b
|
||
foldr f b (x :: xs) = f x (foldr f b xs)
|
||
|
||
infixl 9 _∘_
|
||
_∘_ : ∀ A B C. (B → C) → (A → B) → A → C
|
||
(f ∘ g) x = f (g x)
|
||
|
||
|
||
pfunc addInt : Int → Int → Int := `(x,y) => x + y`
|
||
pfunc mulInt : Int → Int → Int := `(x,y) => x * y`
|
||
pfunc divInt : Int → Int → Int := `(x,y) => x / y | 0`
|
||
pfunc subInt : Int → Int → Int := `(x,y) => x - y`
|
||
pfunc ltInt uses (True False) : Int → Int → Bool := `(x,y) => x < y ? Prelude_True : Prelude_False`
|
||
|
||
instance Mul Int where
|
||
x * y = mulInt x y
|
||
|
||
instance Add Int where
|
||
x + y = addInt x y
|
||
|
||
instance Sub Int where
|
||
x - y = subInt x y
|
||
|
||
instance Div Int where
|
||
x / y = divInt x y
|
||
|
||
printLn : ∀ m. {{HasIO m}} {0 a : U} {{Show a}} → a → m Unit
|
||
printLn a = putStrLn (show a)
|
||
|
||
-- opaque JSObject
|
||
ptype JSObject
|
||
|
||
|
||
-- Like Idris1, but not idris2, we need {a} to put a in scope.
|
||
span : ∀ a. (a → Bool) → List a → List a × List a
|
||
span {a} f xs = go xs Nil
|
||
where
|
||
go : List a → List a → List a × List a
|
||
go Nil left = (reverse left, Nil)
|
||
go (x :: xs) left = if f x
|
||
then go xs (x :: left)
|
||
else (reverse left, x :: xs)
|
||
|
||
instance Show Nat where
|
||
show n = show (natToInt n)
|
||
|
||
enumerate : ∀ a. List a → List (Nat × a)
|
||
enumerate {a} xs = go Z xs
|
||
where
|
||
go : Nat → List a → List (Nat × a)
|
||
go k Nil = Nil
|
||
go k (x :: xs) = (k,x) :: go (S k) xs
|
||
|
||
filter : ∀ a. (a → Bool) → List a → List a
|
||
filter {a} pred xs = go xs Lin
|
||
where
|
||
go : List a → SnocList a → List a
|
||
go Nil acc = acc <>> Nil
|
||
go (x :: xs) acc = if pred x then go xs (acc :< x) else go xs acc
|
||
|
||
drop : ∀ a. Nat → List a → List a
|
||
drop _ Nil = Nil
|
||
drop Z xs = xs
|
||
drop (S k) (x :: xs) = drop k xs
|
||
|
||
take : ∀ a. Nat → List a → List a
|
||
take {a} n xs = go n xs Lin
|
||
where
|
||
go : Nat → List a → SnocList a → List a
|
||
go (S k) (x :: xs) acc = go k xs (acc :< x)
|
||
go _ _ acc = acc <>> Nil
|
||
|
||
getAt : ∀ a. Nat → List a → Maybe a
|
||
getAt _ Nil = Nothing
|
||
getAt Z (x :: xs) = Just x
|
||
getAt (S k) (x :: xs) = getAt k xs
|
||
|
||
|
||
splitOn : ∀ a. {{Eq a}} → a → List a → List (List a)
|
||
splitOn {a} v xs = go Nil xs
|
||
where
|
||
go : List a → List a → List (List a)
|
||
go acc Nil = reverse acc :: Nil
|
||
go acc (x :: xs) = if x == v
|
||
then reverse acc :: go Nil xs
|
||
else go (x :: acc) xs
|
||
|
||
|
||
class Inhabited a where
|
||
default : a
|
||
|
||
instance ∀ a. Inhabited (List a) where
|
||
default = Nil
|
||
|
||
getAt! : ∀ a. {{Inhabited a}} → Nat → List a → a
|
||
getAt! _ Nil = default
|
||
getAt! Z (x :: xs) = x
|
||
getAt! (S k) (x :: xs) = getAt! k xs
|
||
|
||
|
||
instance ∀ a. Applicative (Either a) where
|
||
return b = Right b
|
||
Right x <*> Right y = Right (x y)
|
||
Left x <*> _ = Left x
|
||
Right x <*> Left y = Left y
|
||
|
||
instance ∀ a. Monad (Either a) where
|
||
pure x = Right x
|
||
bind (Right x) mab = mab x
|
||
bind (Left x) mab = Left x
|
||
|
||
instance Monad Maybe where
|
||
pure x = Just x
|
||
bind Nothing mab = Nothing
|
||
bind (Just x) mab = mab x
|
||
|
||
|
||
elem : ∀ a. {{Eq a}} → a → List a → Bool
|
||
elem v Nil = False
|
||
elem v (x :: xs) = if v == x then True else elem v xs
|
||
|
||
-- TODO no empty value on my `Add`, I need a group..
|
||
-- sum : ∀ a. {{Add a}} → List a → a
|
||
-- sum xs = foldl _+_
|
||
pfunc trace uses (debugStr) : ∀ a. String → a → a := `(_, msg, a) => { console.log(msg,Prelude_debugStr(_,a)); return a }`
|
||
|
||
mapMaybe : ∀ a b. (a → Maybe b) → List a → List b
|
||
mapMaybe {a} {b} f xs = go Lin xs
|
||
where
|
||
go : SnocList b → List a → List b
|
||
go acc Nil = acc <>> Nil
|
||
go acc (x :: xs) = case f x of
|
||
Just y => go (acc :< y) xs
|
||
Nothing => go acc xs
|
||
|
||
zip : ∀ a b. List a → List b → List (a × b)
|
||
zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys
|
||
zip _ _ = Nil
|
||
|
||
-- TODO add double literals
|
||
ptype Double
|
||
pfunc intToDouble : Int → Double := `(x) => x`
|
||
pfunc doubleToInt : Double → Int := `(x) => x`
|
||
pfunc addDouble : Double → Double → Double := `(x,y) => x + y`
|
||
pfunc subDouble : Double → Double → Double := `(x,y) => x - y`
|
||
pfunc mulDouble : Double → Double → Double := `(x,y) => x * y`
|
||
pfunc divDouble : Double → Double → Double := `(x,y) => x / y`
|
||
pfunc sqrtDouble : Double → Double := `(x) => Math.sqrt(x)`
|
||
pfunc ceilDouble : Double → Double := `(x) => Math.ceil(x)`
|
||
|
||
instance Add Double where x + y = addDouble x y
|
||
instance Sub Double where x - y = subDouble x y
|
||
instance Mul Double where x * y = mulDouble x y
|
||
instance Div Double where x / y = divDouble x y
|
||
|
||
ptype IOArray : U → U
|
||
|
||
pfunc newArray uses (MkIORes) : ∀ a. Int → a → IO (IOArray a) :=
|
||
`(_, n, v) => (w) => Prelude_MkIORes(Prelude_Array(n).fill(v),w)`
|
||
pfunc arrayGet : ∀ a. IOArray a → Int → IO a := `(_, arr, ix) => w => Prelude_MkIORes(arr[ix], w)`
|
||
pfunc arraySet uses (MkIORes MkUnit) : ∀ a. IOArray a → Int → a → IO Unit := `(_, arr, ix, v) => w => {
|
||
arr[ix] = v
|
||
return Prelude_MkIORes(Prelude_MkUnit, w)
|
||
}`
|
||
pfunc arraySize uses (MkIORes) : ∀ a. IOArray a → IO Int := `(_, arr) => w => Prelude_MkIORes(arr.length, w)`
|
||
|
||
pfunc ioArrayToList uses (Nil _::_ MkIORes) : ∀ a. IOArray a → IO (List a) := `(a,arr) => w => {
|
||
let rval = Prelude_Nil()
|
||
for (let i = arr.length - 1;i >= 0; i--) {
|
||
rval = Prelude__$3A$3A_(arr[i], rval)
|
||
}
|
||
return Prelude_MkIORes(rval, w)
|
||
}`
|
||
|
||
pfunc listToIOArray uses (MkIORes) : ∀ a. List a → IO (Array a) := `(a,list) => w => {
|
||
let rval = []
|
||
while (list.tag === '_::_' || list.tag === 1) {
|
||
rval.push(list.h1)
|
||
list = list.h2
|
||
}
|
||
return Prelude_MkIORes(rval,w)
|
||
}`
|
||
|
||
class Cast a b where
|
||
cast : a → b
|
||
|
||
instance Cast Nat Int where
|
||
cast = natToInt
|
||
|
||
instance Cast Int Double where
|
||
cast = intToDouble
|
||
|
||
instance Applicative IO where
|
||
return a = \ w => MkIORes a w
|
||
f <*> a = \ w =>
|
||
let (MkIORes f w) = f w in
|
||
let (MkIORes a w) = a w in
|
||
MkIORes (f a) w
|
||
|
||
class Bifunctor (f : U → U → U) where
|
||
bimap : ∀ a b c d. (a → c) → (b → d) → f a b → f c d
|
||
|
||
mapFst : ∀ a b c f. {{Bifunctor f}} → (a → c) → f a b → f c b
|
||
mapFst f ab = bimap f id ab
|
||
|
||
mapSnd : ∀ a b c f. {{Bifunctor f}} → (b → c) → f a b → f a c
|
||
mapSnd f ab = bimap id f ab
|
||
|
||
isNothing : ∀ a. Maybe a → Bool
|
||
isNothing Nothing = True
|
||
isNothing _ = False
|
||
|
||
instance Bifunctor _×_ where
|
||
bimap f g (a,b) = (f a, g b)
|
||
|
||
instance Functor IO where
|
||
map f a = bind a $ \ a => pure (f a)
|
||
|
||
uncurry : ∀ a b c. (a → b → c) → (a × b) → c
|
||
uncurry f (a,b) = f a b
|
||
|
||
-- TODO Idris has a tail recursive version of this
|
||
instance Applicative List where
|
||
return a = a :: Nil
|
||
Nil <*> _ = Nil
|
||
fs <*> ys = join $ map (\ f => map f ys) fs
|
||
|
||
tail : ∀ a. List a → List a
|
||
tail Nil = Nil
|
||
tail (x :: xs) = xs
|
||
|
||
data Ordering = LT | EQ | GT
|
||
instance Eq Ordering where
|
||
LT == LT = True
|
||
EQ == EQ = True
|
||
GT == GT = True
|
||
_ == _ = False
|
||
|
||
pfunc jsCompare uses (EQ LT GT) : ∀ a. a → a → Ordering := `(_, a, b) => a == b ? Prelude_EQ : a < b ? Prelude_LT : Prelude_GT`
|
||
|
||
infixl 6 _<_ _<=_ _>_
|
||
class Ord a where
|
||
compare : a → a → Ordering
|
||
|
||
_<_ : ∀ a. {{Ord a}} → a → a → Bool
|
||
a < b = compare a b == LT
|
||
|
||
_<=_ : ∀ a. {{Ord a}} → a → a → Bool
|
||
a <= b = compare a b /= GT
|
||
|
||
_>_ : ∀ a. {{Ord a}} → a → a → Bool
|
||
a > b = compare a b == GT
|
||
|
||
|
||
instance Ord Nat where
|
||
compare Z Z = EQ
|
||
compare _ Z = GT
|
||
compare Z (S _) = LT
|
||
compare (S n) (S m) = compare n m
|
||
|
||
instance Ord Int where
|
||
compare a b = jsCompare a b
|
||
|
||
instance Ord Char where
|
||
compare a b = jsCompare a b
|
||
|
||
flip : ∀ a b c. (a → b → c) → (b → a → c)
|
||
flip f b a = f a b
|
||
|
||
partition : ∀ a. (a → Bool) → List a → List a × List a
|
||
partition {a} pred xs = go xs Nil Nil
|
||
where
|
||
go : List a → List a → List a → List a × List a
|
||
go Nil as bs = (as, bs)
|
||
go (x :: xs) as bs = if pred x
|
||
then go xs (x :: as) bs
|
||
else go xs as (x :: bs)
|
||
|
||
-- probably not super efficient, but it works
|
||
qsort : ∀ a. (a → a → Bool) → List a → List a
|
||
qsort lt Nil = Nil
|
||
qsort lt (x :: xs) = qsort lt (filter (λ y => not $ lt x y) xs) ++ x :: qsort lt (filter (lt x) xs)
|
||
|
||
ordNub : ∀ a. {{Eq a}} {{Ord a}} → List a → List a
|
||
ordNub {a} {{ordA}} xs = go $ qsort _<_ xs
|
||
where
|
||
go : List a → List a
|
||
go (a :: b :: xs) = if a == b then go (a :: xs) else a :: go (b :: xs)
|
||
go t = t
|
||
|
||
nub : ∀ a. {{Eq a}} → List a → List a
|
||
nub Nil = Nil
|
||
nub (x :: xs) = if elem x xs then nub xs else x :: nub xs
|
||
|
||
ite : ∀ a. Bool → a → a → a
|
||
ite c t e = if c then t else e
|
||
|
||
instance Ord String where
|
||
compare a b = jsCompare a b
|
||
|
||
instance Cast Int Nat where
|
||
cast n = intToNat n
|
||
|
||
instance Show Char where
|
||
show c = "'\{jsShow c}'"
|
||
|
||
swap : ∀ a b. a × b → b × a
|
||
swap (a,b) = (b,a)
|
||
|
||
instance ∀ a b. {{Eq a}} {{Eq b}} → Eq (a × b) where
|
||
(a,b) == (c,d) = a == c && b == d
|
||
|
||
instance ∀ a b. {{Ord a}} {{Ord b}} → Ord (a × b) where
|
||
compare (a,b) (c,d) = case compare a c of
|
||
EQ => compare b d
|
||
res => res
|
||
|
||
instance Eq Bool where
|
||
True == x = x
|
||
False == False = True
|
||
_ == _ = False
|
||
|
||
instance ∀ a. {{Eq a}} → Eq (List a) where
|
||
Nil == Nil = True
|
||
(x :: xs) == (y :: ys) = if x == y then xs == ys else False
|
||
_ == _ = False
|
||
|
||
find : ∀ a. (a → Bool) → List a → Maybe a
|
||
find f Nil = Nothing
|
||
find f (x :: xs) = if f x then Just x else find f xs
|
||
|
||
-- TODO this would be faster, but less pure as a primitive
|
||
-- fastConcat might be a good compromise
|
||
joinBy : String → List String → String
|
||
joinBy _ Nil = ""
|
||
joinBy _ (x :: Nil) = x
|
||
joinBy s (x :: y :: xs) = joinBy s ((x ++ s ++ y) :: xs)
|
||
|
||
snoc : ∀ a. List a → a → List a
|
||
snoc xs x = xs ++ (x :: Nil)
|
||
|
||
instance ∀ a b. {{Show a}} {{Show b}} → Show (a × b) where
|
||
show (a,b) = "(" ++ show a ++ ", " ++ show b ++ ")"
|
||
|
||
instance ∀ a. {{Show a}} → Show (List a) where
|
||
show xs = "[" ++ (joinBy ", " $ map show xs) ++ "]"
|
||
|
||
-- For now, I'm not having the compiler do this automatically
|
||
|
||
Lazy : U → U
|
||
Lazy a = Unit → a
|
||
|
||
force : ∀ a. Lazy a → a
|
||
force f = f MkUnit
|
||
|
||
-- unlike Idris, user will have to write \ _ => ...
|
||
when : ∀ f. {{Applicative f}} → Bool → Lazy (f Unit) → f Unit
|
||
when b fa = if b then force fa else return MkUnit
|
||
|
||
unless : ∀ f. {{Applicative f}} → Bool → Lazy (f Unit) → f Unit
|
||
unless b fa = when (not b) fa
|
||
|
||
instance ∀ a. {{Ord a}} → Ord (List a) where
|
||
compare Nil Nil = EQ
|
||
compare Nil ys = LT
|
||
compare xs Nil = GT
|
||
compare (x :: xs) (y :: ys) = case compare x y of
|
||
EQ => compare xs ys
|
||
c => c
|
||
|
||
isSpace : Char → Bool
|
||
isSpace ' ' = True
|
||
isSpace '\n' = True
|
||
isSpace _ = False
|
||
|
||
isDigit : Char → Bool
|
||
isDigit '0' = True
|
||
isDigit '1' = True
|
||
isDigit '2' = True
|
||
isDigit '3' = True
|
||
isDigit '4' = True
|
||
isDigit '5' = True
|
||
isDigit '6' = True
|
||
isDigit '7' = True
|
||
isDigit '8' = True
|
||
isDigit '9' = True
|
||
isDigit _ = False
|
||
|
||
isUpper : Char → Bool
|
||
isUpper c = let o = ord c in 64 < o && o < 91
|
||
|
||
isAlphaNum : Char → Bool
|
||
isAlphaNum c = let o = ord c in
|
||
64 < o && o < 91 ||
|
||
47 < o && o < 58 ||
|
||
96 < o && o < 123
|
||
|
||
ignore : ∀ f a. {{Functor f}} → f a → f Unit
|
||
ignore = map (const MkUnit)
|
||
|
||
instance ∀ a. {{Show a}} → Show (Maybe a) where
|
||
show Nothing = "Nothing"
|
||
show (Just a) = "Just \{show a}"
|
||
|
||
pfunc isPrefixOf uses (True False): String → String → Bool := `(pfx, s) => s.startsWith(pfx) ? Prelude_True : Prelude_False`
|
||
pfunc isSuffixOf uses (True False): String → String → Bool := `(pfx, s) => s.endsWith(pfx) ? Prelude_True : Prelude_False`
|
||
pfunc strIndex : String → Int → Char := `(s, ix) => s[ix]`
|
||
|
||
instance ∀ a. {{Show a}} → Show (SnocList a) where
|
||
show xs = show (xs <>> Nil)
|
||
|
||
getAt' : ∀ a. Int → List a → Maybe a
|
||
getAt' i xs = getAt (cast i) xs
|
||
|
||
length' : ∀ a. List a → Int
|
||
length' xs = go xs 0
|
||
where
|
||
go : ∀ a. List a → Int → Int
|
||
go Nil acc = acc
|
||
go (x :: xs) acc = go xs (acc + 1)
|
||
|
||
unlines : List String → String
|
||
unlines lines = joinBy "\n" lines
|
||
|
||
-- TODO inherit Semigroup
|
||
class Monoid a where
|
||
neutral : a
|
||
|
||
findIndex' : ∀ a. (a → Bool) → List a → Maybe Int
|
||
findIndex' {a} pred xs = go xs 0
|
||
where
|
||
go : List a → Int → Maybe Int
|
||
go Nil ix = Nothing
|
||
go (x :: xs) ix = if pred x then Just ix else go xs (ix + 1)
|
||
|
||
pfunc fatalError : ∀ a. String → a := `(_, msg) => { throw new Error(msg) }`
|
||
|
||
foldlM : ∀ m a e. {{Monad m}} → (a → e → m a) → a → List e → m a
|
||
foldlM f a xs = foldl (\ ma b => ma >>= flip f b) (pure a) xs
|