add list concat sample
This commit is contained in:
@@ -42,6 +42,14 @@ ma >> mb = mb
|
||||
pure : {a : U} {m : U -> U} {{_ : Monad m}} -> a -> m a
|
||||
pure {_} {_} {{MkMonad _ pure'}} a = pure' a
|
||||
|
||||
-- IO
|
||||
infixl 1 _≡_
|
||||
data _≡_ : {A : U} -> A -> A -> U where
|
||||
Refl : {A : U} -> {a : A} -> a ≡ a
|
||||
|
||||
replace : {A : U} {a b : A} -> (P : A -> U) -> a ≡ b -> P a -> P b
|
||||
replace p Refl x = x
|
||||
|
||||
cong : {A B : U} {a b : A} -> (f : A -> B) -> a ≡ b -> f a ≡ f b
|
||||
|
||||
sym : {A : U} -> {a b : A} -> a ≡ b -> b ≡ a
|
||||
sym Refl = Refl
|
||||
|
||||
38
playground/samples/Concat.newt
Normal file
38
playground/samples/Concat.newt
Normal file
@@ -0,0 +1,38 @@
|
||||
module Concat
|
||||
|
||||
data Nat : U where
|
||||
Z : Nat
|
||||
S : Nat -> Nat
|
||||
|
||||
infixl 7 _+_
|
||||
_+_ : Nat -> Nat -> Nat
|
||||
Z + m = m
|
||||
S n + m = S (n + m)
|
||||
|
||||
infixr 3 _::_
|
||||
data List : U -> U where
|
||||
Nil : {A : U} -> List A
|
||||
_::_ : {A : U} -> A -> List A -> List A
|
||||
|
||||
length : {A : U} -> List A -> Nat
|
||||
length Nil = Z
|
||||
length (x :: xs) = S (length xs)
|
||||
|
||||
infixl 2 _++_
|
||||
|
||||
_++_ : {A : U} -> List A -> List A -> List A
|
||||
Nil ++ ys = ys
|
||||
x :: xs ++ ys = x :: (xs ++ ys)
|
||||
|
||||
infixl 1 _≡_
|
||||
data _≡_ : {A : U} -> A -> A -> U where
|
||||
Refl : {A : U} {a : A} -> a ≡ a
|
||||
|
||||
replace : {A : U} {a b : A} -> (P : A -> U) -> a ≡ b -> P a -> P b
|
||||
replace p Refl x = x
|
||||
|
||||
cong : {A B : U} {a b : A} -> (f : A -> B) -> a ≡ b -> f a ≡ f b
|
||||
|
||||
thm : {A : U} (xs ys : List A) -> length (xs ++ ys) ≡ length xs + length ys
|
||||
thm Nil ys = Refl
|
||||
thm (x :: xs) ys = cong S (thm xs ys)
|
||||
@@ -145,9 +145,10 @@ const SAMPLES = [
|
||||
"Tour.newt",
|
||||
"Tree.newt",
|
||||
// "Prelude.newt",
|
||||
"Lib.newt",
|
||||
"Concat.newt",
|
||||
"Day1.newt",
|
||||
"Day2.newt",
|
||||
"Lib.newt",
|
||||
"TypeClass.newt",
|
||||
];
|
||||
|
||||
|
||||
38
tests/black/Concat.newt
Normal file
38
tests/black/Concat.newt
Normal file
@@ -0,0 +1,38 @@
|
||||
module Concat
|
||||
|
||||
data Nat : U where
|
||||
Z : Nat
|
||||
S : Nat -> Nat
|
||||
|
||||
infixl 7 _+_
|
||||
_+_ : Nat -> Nat -> Nat
|
||||
Z + m = m
|
||||
S n + m = S (n + m)
|
||||
|
||||
infixr 3 _::_
|
||||
data List : U -> U where
|
||||
Nil : {A : U} -> List A
|
||||
_::_ : {A : U} -> A -> List A -> List A
|
||||
|
||||
length : {A : U} -> List A -> Nat
|
||||
length Nil = Z
|
||||
length (x :: xs) = S (length xs)
|
||||
|
||||
infixl 2 _++_
|
||||
|
||||
_++_ : {A : U} -> List A -> List A -> List A
|
||||
Nil ++ ys = ys
|
||||
x :: xs ++ ys = x :: (xs ++ ys)
|
||||
|
||||
infixl 1 _≡_
|
||||
data _≡_ : {A : U} -> A -> A -> U where
|
||||
Refl : {A : U} {a : A} -> a ≡ a
|
||||
|
||||
replace : {A : U} {a b : A} -> (P : A -> U) -> a ≡ b -> P a -> P b
|
||||
replace p Refl x = x
|
||||
|
||||
cong : {A B : U} {a b : A} -> (f : A -> B) -> a ≡ b -> f a ≡ f b
|
||||
|
||||
thm : {A : U} (xs ys : List A) -> length (xs ++ ys) ≡ length xs + length ys
|
||||
thm Nil ys = Refl
|
||||
thm (x :: xs) ys = cong S (thm xs ys)
|
||||
Reference in New Issue
Block a user