First pass at sugar for instances.

This commit is contained in:
2024-11-17 08:57:26 -08:00
parent fac34e729c
commit 6b36dd1cd1
8 changed files with 201 additions and 83 deletions

View File

@@ -1,6 +1,9 @@
SRCS=$(shell find src -name "*.idr")
all: build/exec/newt build/exec/newt.js build/exec/newt.min.js
.PHONY:
all: build/exec/newt build/exec/newt.js
# build/exec/newt.min.js
build/exec/newt: ${SRCS}
idris2 --build newt.ipkg
@@ -17,3 +20,5 @@ test: build/exec/newt
vscode:
cd newt-vscode && vsce package && code --install-extension *.vsix
playground: .PHONY
cd playground && ./build

View File

@@ -1,8 +1,11 @@
## TODO
NOW - sorting out instance sugar for `Monad {a} -> (Either a)`.
- [ ] accepting DCon for another type (skipping case, but should be an error)
- [ ] don't allow (or dot) duplicate names on LHS
- [ ] remove metas from context, M has TopContext
- [ ] improve test driver
- maybe a file listing jobs, whether they are known broken, optional expected output, optional expected JS execution output.
- [x] forall / ∀ sugar (Maybe drop this, issues with `.` and `{A}` works fine)

View File

@@ -56,8 +56,9 @@ plus' = \ n m => case n of
Z => m
S n => S (plus' n m)
-- We can define operators, currently only infix
-- and we allow unicode and letters in operators
-- We can define operators. Mixfix is supported, but we don't
-- allow ambiguity (so you can't have both [_] and [_,_]). See
-- the Reasoning.newt sample for a mixfix example.
infixl 2 _≡_
-- Here is an equality, like Idris, everything goes to the right of the colon
@@ -70,29 +71,18 @@ data _≡_ : {A : U} -> A -> A -> U where
test : plus (S Z) (S Z) S (S Z)
test = Refl
-- Ok now we do typeclasses. There isn't any sugar, but we have
-- search for implicits marked with double brackets.
-- Ok now we do typeclasses. `class` and `instance` are sugar for
-- ordinary data and functions:
-- Let's say we want a generic `_+_` operator
infixl 7 _+_
-- We don't have records yet, so we define a single constructor
-- inductive type. Here we also use `∀ A.` which is sugar for `{A : _} ->`
data Plus : U -> U where
MkPlus : A. (A -> A -> A) -> Plus A
class Add a where
_+_ : a -> a -> a
-- and the generic function that uses it
-- the double brackets indicate an argument that is solved by search
_+_ : A. {{_ : Plus A}} -> A -> A -> A
_+_ {{MkPlus f}} x y = f x y
-- The typeclass is now defined, search will look for functions in scope
-- that return a type matching (same type constructor) the implicit
-- and only have implicit arguments (inspired by Agda).
-- We make an instance `Plus Nat`
PlusNat : Plus Nat
PlusNat = MkPlus plus
instance Add Nat where
Z + m = m
(S n) + m = S (n + m)
-- and it now finds the implicits, you'll see the solutions to the
-- implicits if you hover over the `+`.
@@ -108,7 +98,7 @@ foo a b = ?
-- javascript output. It is not doing erasure (or inlining) yet, so the
-- code is a little verbose.
-- We can define native types:
-- We can define native types, if the type is left off, it defaults to U
ptype Int : U
ptype String : U
@@ -133,36 +123,49 @@ pfunc plusString : String -> String -> String := "(x,y) => x + y"
-- We can make them Plus instances:
PlusInt : Plus Int
PlusInt = MkPlus plusInt
PlusString : Plus String
PlusString = MkPlus plusString
instance Add Int where
_+_ = plusInt
instance Add String where
_+_ = plusString
concat : String -> String -> String
concat a b = a + b
-- Now we define Monad
class Monad (m : U -> U) where
pure : {a} -> a -> m a
bind : {a b} -> m a -> (a -> m b) -> m b
data Monad : (U -> U) -> U where
/-
This desugars to:
data Monad : (m : U -> U) -> U where
MkMonad : {m : U -> U} ->
({a : U} -> a -> m a) ->
({a b : U} -> m a -> (a -> m b) -> m b) ->
(pure : {a : _} -> a -> m a) ->
(bind : {a : _} -> {b : _} -> m a -> a -> m b -> m b) ->
Monad m
pure : m. {{Monad m}} -> {a : U} -> a -> m a
pure {{MkMonad p _}} a = p a
pure : {m : U -> U} -> {{_ : Monad m}} -> {a : _} -> a -> m a
pure {m} {{MkMonad pure bind}} = pure
bind : {m : U -> U} -> {{_ : Monad m}} -> {a : _} -> {b : _} -> m a -> a -> m b -> m b
bind {m} {{MkMonad pure bind}} = bind
-/
-- we can declare multiple infix operators at once
infixl 1 _>>=_ _>>_
_>>=_ : m a b. {{Monad m}} -> m a -> (a -> m b) -> m b
_>>=_ {{MkMonad _ b}} ma amb = b ma amb
_>>=_ : {m} {{Monad m}} {a b} -> m a -> (a -> m b) -> m b
_>>=_ ma amb = bind ma amb
_>>_ : m a b. {{Monad m}} -> m a -> m b -> m b
_>>_ : {m} {{Monad m}} {a b} -> m a -> m b -> m b
ma >> mb = ma >>= (λ _ => mb)
-- That's our Monad typeclass, now let's make a List monad
-- Now we define list and show it is a monad. At the moment, I don't
-- have sugar for Lists,
infixr 3 _::_
data List : U -> U where
@@ -174,15 +177,26 @@ _++_ : ∀ a. List a -> List a -> List a
Nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
bindList : a b. List a -> (a -> List b) -> List b
bindList Nil f = Nil
bindList (x :: xs) f = f x ++ bindList xs f
instance Monad List where
pure a = a :: Nil
bind Nil f = Nil
bind (x :: xs) f = f x ++ bind xs f
-- Both `\` and `λ` work for lambda expressions:
MonadList : Monad List
MonadList = MkMonad (λ a => a :: Nil) bindList
/-
This desugars to: (the names in guillemots are not user-accessible)
-- We'll want Pair below too. `,` has been left for use as an operator.
«Monad List,pure» : { a : U } -> a:0 -> List a:1
pure a = _::_ a Nil
«Monad List,bind» : { a : U } -> { b : U } -> (List a) -> (a -> List b) -> List b
bind Nil f = Nil bind (_::_ x xs) f = _++_ (f x) (bind xs f)
«Monad List» : Monad List
«Monad List» = MkMonad «Monad List,pure» «Monad List,bind»
-/
-- We'll want Pair below. `,` has been left for use as an operator.
-- Also we see that → can be used in lieu of ->
infixr 1 _,_ _×_
data _×_ : U U U where

View File

@@ -1,42 +1,35 @@
module TypeClass
data Monad : (U -> U) -> U where
MkMonad : { M : U -> U } ->
(bind : {A B : U} -> (M A) -> (A -> M B) -> M B) ->
(pure : A. A -> M A) ->
Monad M
class Monad (m : U U) where
bind : {a b} m a (a m b) m b
pure : {a} a m a
infixl 1 _>>=_ _>>_
_>>=_ : m a b. {{Monad m}} -> (m a) -> (a -> m b) -> m b
_>>=_ {{MkMonad bind' _}} ma amb = bind' ma amb
_>>=_ : {m} {{Monad m}} {a b} -> (m a) -> (a -> m b) -> m b
ma >>= amb = bind ma amb
_>>_ : m a b. {{Monad m}} -> m a -> m b -> m b
ma >> mb = mb
pure : m a. {{Monad m}} -> a -> m a
pure {{MkMonad _ pure'}} a = pure' a
data Either : U -> U -> U where
Left : A B. A -> Either A B
Right : A B. B -> Either A B
bindEither : A B C. (Either A B) -> (B -> Either A C) -> Either A C
bindEither (Left a) amb = Left a
bindEither (Right b) amb = amb b
instance {a} Monad (Either a) where
bind (Left a) amb = Left a
bind (Right b) amb = amb b
EitherMonad : A. Monad (Either A)
EitherMonad = MkMonad {Either A} bindEither Right
pure a = Right a
data Maybe : U -> U where
Just : A. A -> Maybe A
Nothing : A. Maybe A
bindMaybe : A B. Maybe A -> (A -> Maybe B) -> Maybe B
bindMaybe Nothing amb = Nothing
bindMaybe (Just a) amb = amb a
instance Monad Maybe where
bind Nothing amb = Nothing
bind (Just a) amb = amb a
MaybeMonad : Monad Maybe
MaybeMonad = MkMonad bindMaybe Just
pure a = Just a
infixr 7 _::_
data List : U -> U where
@@ -48,16 +41,11 @@ _++_ : ∀ A. List A -> List A -> List A
Nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
bindList : A B. List A -> (A -> List B) -> List B
bindList Nil f = Nil
bindList (x :: xs) f = f x ++ bindList xs f
instance Monad List where
bind Nil f = Nil
bind (x :: xs) f = f x ++ bind xs f
singleton : A. A -> List A
singleton a = a :: Nil
-- TODO need better error when the monad is not defined
ListMonad : Monad List
ListMonad = MkMonad bindList singleton
pure x = x :: Nil
infixr 1 _,_
data Pair : U -> U -> U where

View File

@@ -157,7 +157,7 @@ eval env mode (Let fc nm t u) = pure $ VLet fc nm !(eval env mode t) !(eval (VVa
-- translate to a level
eval env mode (Bnd fc i) = case getAt i env of
Just rval => pure rval
Nothing => error' "Bad deBruin index \{show i}"
Nothing => error fc "Bad deBruin index \{show i}"
eval env mode (Lit fc lit) = pure $ VLit fc lit
eval env mode tm@(Case fc sc alts) = do

View File

@@ -406,7 +406,7 @@ parseData = do
nakedBind : Parser Telescope
nakedBind = do
names <- some (withPos varname)
pure $ map (\(pos,name) => (pos, name, Implicit, RImplicit pos)) names
pure $ map (\(pos,name) => (pos, name, Explicit, RImplicit pos)) names
export
parseClass : Parser Decl
@@ -419,6 +419,16 @@ parseClass = do
decls <- startBlock $ manySame $ parseSig
pure $ Class fc name (join teles) decls
export
parseInstance : Parser Decl
parseInstance = do
fc <- getPos
keyword "instance"
ty <- typeExpr
keyword "where"
decls <- startBlock $ manySame $ parseDef
pure $ Instance fc ty decls
-- Not sure what I want here.
-- I can't get a Tm without a type, and then we're covered by the other stuff
parseNorm : Parser Decl
@@ -427,7 +437,8 @@ parseNorm = DCheck <$> getPos <* keyword "#check" <*> typeExpr <* keyword ":" <*
export
parseDecl : Parser Decl
parseDecl = parseMixfix <|> parsePType <|> parsePFunc
<|> parseNorm <|> parseData <|> parseSig <|> parseDef <|> parseClass
<|> parseNorm <|> parseData <|> parseSig <|> parseDef
<|> parseClass <|> parseInstance
export

View File

@@ -3,6 +3,7 @@ module Lib.ProcessDecl
import Data.IORef
import Data.String
import Data.Vect
import Data.List
import Data.Maybe
import Lib.Elab
@@ -27,7 +28,7 @@ isCandidate _ _ = False
-- TODO consider ctx
findMatches : Context -> Val -> List TopEntry -> M (List (Tm, MetaContext))
findMatches ctx ty [] = pure []
findMatches ctx ty ((MkEntry name type def@(Fn t)) :: xs) = do
findMatches ctx ty ((MkEntry name type def) :: xs) = do
let True = isCandidate ty type | False => findMatches ctx ty xs
top <- get
-- let ctx = mkCtx top.metas (getFC ty)
@@ -207,8 +208,10 @@ processDecl (Def fc nm clauses) = do
putStrLn "check \{nm} at \{pprint [] ty}"
vty <- eval empty CBN ty
debug "\{nm} vty is \{show vty}"
-- I can take LHS apart syntactically or elaborate it with an infer
clauses' <- traverse (makeClause top) clauses
tm <- buildTree (mkCtx top.metas fc) (MkProb clauses' vty)
@@ -217,7 +220,6 @@ processDecl (Def fc nm clauses) = do
mc <- readIORef top.metas
let mlen = length mc.metas `minus` mstart
solveAutos mlen (take mlen mc.metas)
-- TODO - make nf that expands all metas and drop zonk
-- Day1.newt is a test case
-- tm' <- nf [] tm
@@ -261,16 +263,14 @@ processDecl (Class classFC nm tele decls) = do
processDecl decl
for_ fields $ \ (fc,name,ty) => do
let funType = teleToPi impTele $ RPi fc Nothing Auto tail ty
putStrLn "\{name} : \{pretty funType}"
processDecl $ TypeSig fc [name] funType
let autoPat = foldl (\acc, (fc,nm,ty) => RApp fc acc (RVar fc nm) Explicit) (RVar classFC dcName) fields
putStrLn "\{pretty autoPat}"
let lhs = foldl (\acc, (fc', nm, _, _) => RApp fc' acc (RVar fc' nm) Implicit) (RVar fc name) tele
let lhs = RApp classFC lhs autoPat Auto
let decl = Def fc name [(lhs, (RVar fc name))]
putStrLn "\{name} : \{pretty funType}"
putStrLn "\{pretty decl}"
processDecl $ TypeSig fc [name] funType
processDecl decl
where
@@ -287,6 +287,99 @@ processDecl (Class classFC nm tele decls) = do
teleToPi [] end = end
teleToPi ((fc, nm, icit, ty) :: tele) end = RPi fc (Just nm) icit ty (teleToPi tele end)
processDecl (Instance instfc ty decls) = do
let decls = collectDecl decls
putStrLn "-----"
putStrLn "Instance \{pretty ty}"
top <- get
let tyFC = getFC ty
vty <- check (mkCtx top.metas instfc) ty (VU instfc)
-- Here `tele` holds arguments to the instance
let (codomain, tele) = splitTele vty
-- env represents the environment of those arguments
let env = tenv (length tele)
debug "codomain \{pprint [] codomain}"
debug "tele is \{show tele}"
-- ok so we need a name, a hack for now.
-- Maybe we need to ask the user (e.g. `instance someName : Monad Foo where`)
-- or use "Monad\{show $ length defs}"
let instname = interpolate $ pprint [] codomain
let sigDecl = TypeSig instfc [instname] ty
let (Ref _ tconName _, args) := funArgs codomain
| (tm, _) => error tyFC "\{pprint [] codomain} doesn't appear to be a TCon application"
let (Just (MkEntry name type (TCon cons))) = lookup tconName top
| _ => error tyFC "\{tconName} is not a type constructor"
let [con] = cons
| _ => error tyFC "\{tconName} has multiple constructors \{show cons}"
let (Just (MkEntry _ dcty (DCon _ _))) = lookup con top
| _ => error tyFC "can't find constructor \{show con}"
vdcty@(VPi _ nm icit a b) <- eval [] CBN dcty
| x => error (getFC x) "dcty not Pi"
debug "dcty \{pprint [] dcty}"
let (_,args) = funArgs codomain
debug "traverse \{show $ map showTm args}"
-- This is a little painful because we're reverse engineering the
-- individual types back out from the composite type
args' <- traverse (eval env CBN) args
debug "args' is \{show args'}"
conTele <- getFields !(apply vdcty args') env []
-- declare individual functions, collect their defs
defs <- for conTele $ \case
(MkBind fc nm Explicit ty) => do
let ty' = foldr (\(MkBind fc nm' icit ty'), acc => Pi fc nm' icit ty' acc) ty tele
let nm' = "\{instname},\{nm}"
-- we're working with a Tm, so we define directly instead of processDecl
setDef nm' fc ty' Axiom
let Just (Def fc name xs) = find (\case (Def y name xs) => name == nm; _ => False) decls
| _ => error instfc "no definition for \{nm}"
let decl = (Def fc nm' xs)
putStrLn "***"
putStrLn "«\{nm'}» : \{pprint [] ty'}"
putStrLn $ render 80 $ pretty decl
pure $ Just decl
_ => pure Nothing
-- This needs to be declared before processing the defs, but the defs need to be
-- declared before this
processDecl sigDecl
for_ (mapMaybe id defs) $ \decl => do
-- debug because already printed above, but nice to have it near processing
debug $ render 80 $ pretty decl
processDecl decl
let decl = Def instfc instname [(RVar instfc instname, mkRHS instname conTele (RVar instfc con))]
putStrLn "SIGDECL"
putStrLn "\{pretty sigDecl}"
putStrLn $ render 80 $ pretty decl
processDecl decl
where
-- try to extract types of individual fields from the typeclass dcon
-- We're assuming they don't depend on each other.
getFields : Val -> Env -> List Binder -> M (List Binder)
getFields tm@(VPi fc nm Explicit ty sc) env bnds = do
bnd <- MkBind fc nm Explicit <$> quote (length env) ty
getFields !(sc $$ VVar fc (length env) [<]) env (bnd :: bnds)
getFields tm@(VPi fc nm _ ty sc) env bnds = getFields !(sc $$ VVar fc (length env) [<]) env bnds
getFields tm xs bnds = pure $ reverse bnds
tenv : Nat -> Env
tenv Z = []
tenv (S k) = (VVar emptyFC k [<] :: tenv k)
mkRHS : String -> List Binder -> Raw -> Raw
mkRHS instName (MkBind fc nm Explicit ty :: bs) tm = mkRHS instName bs (RApp fc tm (RVar fc "\{instName},\{nm}") Explicit)
mkRHS instName (b :: bs) tm = mkRHS instName bs tm
mkRHS instName [] tm = tm
apply : Val -> List Val -> M Val
apply x [] = pure x
apply (VPi fc nm icit a b) (x :: xs) = apply !(b $$ x) xs
apply x (y :: xs) = error instfc "expected pi type \{show x}"
processDecl (Data fc nm ty cons) = do
putStrLn "-----"
putStrLn "Data \{nm}"

View File

@@ -121,6 +121,7 @@ data Decl
| PFunc FC Name Raw String
| PMixFix FC (List Name) Nat Fixity
| Class FC Name Telescope (List Decl)
| Instance FC Raw (List Decl)
public export
@@ -154,6 +155,7 @@ Show Clause where
Show Import where
show (MkImport _ str) = foo ["MkImport", show str]
-- this is for debugging, use pretty when possible
covering
Show Decl where
show (TypeSig _ str x) = foo ["TypeSig", show str, show x]
@@ -163,7 +165,8 @@ Show Decl where
show (PType _ name ty) = foo ["PType", name, show ty]
show (PFunc _ nm ty src) = foo ["PFunc", nm, show ty, show src]
show (PMixFix _ nms prec fix) = foo ["PMixFix", show nms, show prec, show fix]
show (Class _ nm _ _) = foo ["Class", "FIXME"]
show (Class _ nm tele decls) = foo ["Class", nm, "...", show $ map show decls]
show (Instance _ nm decls) = foo ["Instance", show nm, show $ map show decls]
export covering
Show Module where
@@ -261,7 +264,8 @@ Pretty Decl where
pretty (PType _ nm ty) = text "ptype" <+> text nm <+> (maybe empty (\ty => ":" <+> pretty ty) ty)
pretty (PFunc _ nm ty src) = "pfunc" <+> text nm <+> ":" <+> nest 2 (pretty ty <+> ":=" <+/> text (show src))
pretty (PMixFix _ names prec fix) = text (show fix) <+> text (show prec) <+> spread (map text names)
pretty (Class _ _ _ _) = text "TODO pretty PClass"
pretty (Class _ _ _ _) = text "TODO pretty Class"
pretty (Instance _ _ _) = text "TODO pretty Instance"
export
Pretty Module where