link prelude copies to same file

This commit is contained in:
2024-12-03 17:42:11 -08:00
parent ee50677d4b
commit dbc5670a52
7 changed files with 102 additions and 1768 deletions

View File

@@ -21,7 +21,7 @@
- [ ] records
- [ ] rework unify case tree
- Idris needs help with the case tree to keep code size down, do it in stages, one dcon at a time.
- [ ] Strategy to avoid three copies of `Prelude.newt` in this source tree
- [x] Strategy to avoid three copies of `Prelude.newt` in this source tree
- [ ] `mapM` needs inference help when scrutinee (see Day2.newt)
- Meta hasn't been solved yet. It's Normal, but maybe our delayed solving of Auto plays into it. Idris will peek at LHS of CaseAlts to guess the type if it doesn't have one.
- [ ] Can't skip an auto. We need `{{_}}` to be auto or `%search` syntax.

View File

@@ -1,629 +0,0 @@
module Prelude
id : a. a a
id x = x
data Bool : U where
True False : Bool
not : Bool Bool
not True = False
not False = True
-- In Idris, this is lazy in the second arg, we're not doing
-- magic laziness for now, it's messy
infixr 4 _||_
_||_ : Bool Bool Bool
True || _ = True
False || b = b
infixr 5 _&&_
_&&_ : Bool Bool Bool
False && b = False
True && b = b
infixl 6 _==_
class Eq a where
_==_ : a a Bool
infixl 6 _/=_
_/=_ : a. {{Eq a}} a a Bool
a /= b = not (a == b)
data Nat : U where
Z : Nat
S : Nat -> Nat
pred : Nat Nat
pred Z = Z
pred (S k) = k
instance Eq Nat where
Z == Z = True
S n == S m = n == m
x == y = False
data Maybe : U -> U where
Just : a. a -> Maybe a
Nothing : a. Maybe a
fromMaybe : a. a Maybe a a
fromMaybe a Nothing = a
fromMaybe _ (Just a) = a
data Either : U -> U -> U where
Left : {0 a b : U} -> a -> Either a b
Right : {0 a b : U} -> b -> Either a b
infixr 7 _::_
data List : U -> U where
Nil : A. List A
_::_ : A. A List A List A
length : a. List a Nat
length Nil = Z
length (x :: xs) = S (length xs)
infixl 7 _:<_
data SnocList : U U where
Lin : A. SnocList A
_:<_ : A. SnocList A A SnocList A
-- 'chips'
infixr 6 _<>>_
_<>>_ : a. SnocList a List a List a
Lin <>> ys = ys
(xs :< x) <>> ys = xs <>> x :: ys
-- This is now handled by the parser, and LHS becomes `f a`.
-- infixr 0 _$_
-- _$_ : ∀ a b. (a -> b) -> a -> b
-- f $ a = f a
infixr 8 _×_
infixr 2 _,_
data _×_ : U U U where
_,_ : A B. A B A × B
fst : a b. a × b a
fst (a,b) = a
snd : a b. a × b b
snd (a,b) = b
infixl 6 _<_ _<=_
class Ord a where
_<_ : a a Bool
instance Ord Nat where
_ < Z = False
Z < S _ = True
S n < S m = n < m
_<=_ : a. {{Eq a}} {{Ord a}} a a Bool
a <= b = a == b || a < b
-- Monad
class Monad (m : U U) where
bind : {0 a b} m a (a m b) m b
pure : {0 a} a m a
infixl 1 _>>=_ _>>_
_>>=_ : {0 m} {{Monad m}} {0 a b} -> (m a) -> (a -> m b) -> m b
ma >>= amb = bind ma amb
_>>_ : {0 m} {{Monad m}} {0 a b} -> m a -> m b -> m b
ma >> mb = ma >>= (\ _ => mb)
join : m. {{Monad m}} {0 a} m (m a) m a
join mma = mma >>= id
-- Equality
infixl 1 _≡_
data _≡_ : {A : U} -> A -> A -> U where
Refl : {A : U} -> {a : A} -> a a
replace : {A : U} {a b : A} -> (P : A -> U) -> a b -> P a -> P b
replace p Refl x = x
cong : {A B : U} {a b : A} -> (f : A -> B) -> a b -> f a f b
sym : {A : U} -> {a b : A} -> a b -> b a
sym Refl = Refl
-- Functor
class Functor (m : U U) where
map : {0 a b} (a b) m a m b
infixr 4 _<$>_
_<$>_ : {0 f} {{Functor f}} {0 a b} (a b) f a f b
f <$> ma = map f ma
instance Functor Maybe where
map f Nothing = Nothing
map f (Just a) = Just (f a)
instance Functor List where
map f Nil = Nil
map f (x :: xs) = f x :: map f xs
instance Functor SnocList where
map f Lin = Lin
map f (xs :< x) = map f xs :< f x
-- TODO this probably should depend on / entail Functor
infixl 3 _<*>_
class Applicative (f : U U) where
-- appIsFunctor : Functor f
return : {0 a} a f a
_<*>_ : {0 a b} -> f (a b) f a f b
class Traversable (t : U U) where
traverse : f a b. {{Applicative f}} (a f b) t a f (t b)
instance Traversable List where
traverse f Nil = return Nil
traverse f (x :: xs) = return _::_ <*> f x <*> traverse f xs
for : {t : U U} {f : U U} {{Traversable t}} {{appf : Applicative f}} {a : U} {b : U} t a (a f b) f (t b)
for stuff fun = traverse fun stuff
instance Applicative Maybe where
return a = Just a
Nothing <*> _ = Nothing
Just f <*> fa = f <$> fa
infixr 2 _<|>_
class Alternative (m : U U) where
_<|>_ : {0 a} m a m a m a
instance Alternative Maybe where
Nothing <|> x = x
Just x <|> _ = Just x
-- Semigroup
infixl 8 _<+>_
class Semigroup a where
_<+>_ : a a a
infixl 7 _+_
class Add a where
_+_ : a a a
infixl 8 _*_ _/_
class Mul a where
_*_ : a a a
class Div a where
_/_ : a a a
instance Add Nat where
Z + m = m
S n + m = S (n + m)
instance Mul Nat where
Z * _ = Z
S n * m = m + n * m
infixl 7 _-_
class Sub a where
_-_ : a a a
instance Sub Nat where
Z - m = Z
n - Z = n
S n - S m = n - m
infixr 7 _++_
class Concat a where
_++_ : a a a
ptype String
ptype Int
ptype Char
pfunc sconcat : String String String := `(x,y) => x + y`
instance Concat String where
_++_ = sconcat
pfunc jsEq uses (True False) : a. a a Bool := `(_, a, b) => a == b ? True : False`
instance Eq Int where
a == b = jsEq a b
instance Eq String where
a == b = jsEq a b
instance Eq Char where
a == b = jsEq a b
data Unit : U where
MkUnit : Unit
ptype Array : U U
pfunc listToArray : {a : U} -> List a -> Array a := `
(a, l) => {
let rval = []
while (l.tag !== 'Nil') {
rval.push(l.h1)
l = l.h2
}
return rval
}
`
pfunc alen : {0 a : U} -> Array a -> Int := `(a,arr) => arr.length`
pfunc aget : {0 a : U} -> Array a -> Int -> a := `(a, arr, ix) => arr[ix]`
pfunc aempty : {0 a : U} -> Unit -> Array a := `() => []`
pfunc arrayToList uses (Nil _::_) : {0 a} Array a List a := `(a,arr) => {
let rval = Nil(a)
for (let i = arr.length - 1;i >= 0; i--) {
rval = _$3A$3A_(a, arr[i], rval)
}
return rval
}`
-- for now I'll run this in JS
pfunc lines : String List String := `(s) => arrayToList(s.split('\n'))`
pfunc p_strHead : (s : String) -> Char := `(s) => s[0]`
pfunc p_strTail : (s : String) -> String := `(s) => s[0]`
pfunc trim : String -> String := `s => s.trim()`
pfunc split uses (Nil _::_) : String -> String -> List String := `(s, by) => {
let parts = s.split(by)
let rval = Nil(String)
parts.reverse()
parts.forEach(p => { rval = _$3A$3A_(undefined, p, rval) })
return rval
}`
pfunc slen : String -> Int := `s => s.length`
pfunc sindex : String -> Int -> Char := `(s,i) => s[i]`
-- TODO represent Nat as number at runtime
pfunc natToInt : Nat -> Int := `(n) => {
let rval = 0
while (n.tag === 'S') {
n = n.h0
rval++
}
return rval
}`
pfunc fastConcat : List String String := `(xs) => listToArray(undefined, xs).join('')`
pfunc replicate : Nat -> Char String := `(n,c) => c.repeat(natToInt(n))`
-- I don't want to use an empty type because it would be a proof of void
ptype World
data IORes : U -> U where
MkIORes : {a : U} -> a -> World -> IORes a
IO : U -> U
IO a = World -> IORes a
instance Monad IO where
bind ma mab = \ w => case ma w of
MkIORes a w => mab a w
pure a = \ w => MkIORes a w
bindList : a b. List a (a List b) List b
instance a. Concat (List a) where
Nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
instance Monad List where
pure a = a :: Nil
bind Nil amb = Nil
bind (x :: xs) amb = amb x ++ bind xs amb
-- This is traverse, but we haven't defined Traversable yet
mapA : m. {{Applicative m}} {0 a b} (a m b) List a m (List b)
mapA f Nil = return Nil
mapA f (x :: xs) = return _::_ <*> f x <*> mapA f xs
mapM : m. {{Monad m}} {0 a b} (a m b) List a m (List b)
mapM f Nil = pure Nil
mapM f (x :: xs) = do
b <- f x
bs <- mapM f xs
pure (b :: bs)
class HasIO (m : U -> U) where
liftIO : a. IO a m a
instance HasIO IO where
liftIO a = a
pfunc debugLog uses (MkIORes MkUnit) : a. a -> IO Unit := `(_,s) => (w) => {
console.log(s)
return MkIORes(undefined,MkUnit,w)
}`
pfunc primPutStrLn uses (MkIORes MkUnit) : String -> IO Unit := `(s) => (w) => {
console.log(s)
return MkIORes(undefined,MkUnit,w)
}`
putStrLn : io. {{HasIO io}} -> String -> io Unit
putStrLn s = liftIO (primPutStrLn s)
pfunc showInt : Int -> String := `(i) => String(i)`
class Show a where
show : a String
instance Show String where
show a = a
instance Show Int where
show = showInt
pfunc ord : Char -> Int := `(c) => c.charCodeAt(0)`
pfunc unpack : String -> List Char
:= `(s) => {
let acc = Nil(Char)
for (let i = s.length - 1; 0 <= i; i--) acc = _$3A$3A_(Char, s[i], acc)
return acc
}`
pfunc pack : List Char String := `(cs) => {
let rval = ''
while (cs.tag === '_::_') {
rval += cs.h1
cs = cs.h2
}
return rval
}
`
pfunc debugStr uses (natToInt listToArray) : a. a String := `(_, obj) => {
const go = (obj) => {
if (obj?.tag === '_::_' || obj?.tag === 'Nil') {
let stuff = listToArray(undefined,obj)
return '['+(stuff.map(go).join(', '))+']'
}
if (obj?.tag === 'S' || obj?.tag === 'Z') {
return ''+natToInt(obj)
} else if (obj?.tag) {
let rval = '('+obj.tag
for(let i=0;;i++) {
let key = 'h'+i
if (!(key in obj)) break
rval += ' ' + go(obj[key])
}
return rval+')'
} else {
return JSON.stringify(obj)
}
}
return go(obj)
}`
pfunc stringToInt : String Int := `(s) => {
let rval = Number(s)
if (isNaN(rval)) throw new Error(s + " is NaN")
return rval
}`
foldl : A B. (B -> A -> B) -> B -> List A -> B
foldl f acc Nil = acc
foldl f acc (x :: xs) = foldl f (f acc x) xs
infixl 9 _∘_
_∘_ : {A B C : U} -> (B -> C) -> (A -> B) -> A -> C
(f g) x = f (g x)
pfunc addInt : Int Int Int := `(x,y) => x + y`
pfunc mulInt : Int Int Int := `(x,y) => x * y`
pfunc subInt : Int Int Int := `(x,y) => x - y`
pfunc ltInt uses (True False) : Int Int Bool := `(x,y) => x < y ? True : False`
instance Mul Int where
x * y = mulInt x y
instance Add Int where
x + y = addInt x y
instance Sub Int where
x - y = subInt x y
instance Ord Int where
x < y = ltInt x y
printLn : {m} {{HasIO m}} {a} {{Show a}} a m Unit
printLn a = putStrLn (show a)
-- opaque JSObject
ptype JSObject
reverse : a. List a List a
reverse {a} = go Nil
where
go : List a List a List a
go acc Nil = acc
go acc (x :: xs) = go (x :: acc) xs
-- Like Idris1, but not idris2, we need {a} to put a in scope.
span : a. (a -> Bool) -> List a -> List a × List a
span {a} f xs = go xs Nil
where
go : List a -> List a -> List a × List a
go Nil left = (reverse left, Nil)
go (x :: xs) left = if f x
then go xs (x :: left)
else (reverse left, x :: xs)
instance Show Nat where
show n = show (natToInt n)
enumerate : a. List a List (Nat × a)
enumerate {a} xs = go Z xs
where
go : Nat List a List (Nat × a)
go k Nil = Nil
go k (x :: xs) = (k,x) :: go (S k) xs
filter : a. (a Bool) List a List a
filter pred Nil = Nil
filter pred (x :: xs) = if pred x then x :: filter pred xs else filter pred xs
drop : a. Nat -> List a -> List a
drop _ Nil = Nil
drop Z xs = xs
drop (S k) (x :: xs) = drop k xs
take : a. Nat -> List a -> List a
take Z xs = Nil
take _ Nil = Nil
take (S k) (x :: xs) = x :: take k xs
getAt : a. Nat List a Maybe a
getAt _ Nil = Nothing
getAt Z (x :: xs) = Just x
getAt (S k) (x :: xs) = getAt k xs
splitOn : a. {{Eq a}} a List a List (List a)
splitOn {a} v xs = go Nil xs
where
go : List a List a List (List a)
go acc Nil = reverse acc :: Nil
go acc (x :: xs) = if x == v
then reverse acc :: go Nil xs
else go (x :: acc) xs
class Inhabited a where
default : a
instance a. Inhabited (List a) where
default = Nil
getAt! : a. {{Inhabited a}} Nat List a a
getAt! _ Nil = default
getAt! Z (x :: xs) = x
getAt! (S k) (x :: xs) = getAt! k xs
instance a. Applicative (Either a) where
return b = Right b
Right x <*> Right y = Right (x y)
Left x <*> _ = Left x
Right x <*> Left y = Left y
instance a. Monad (Either a) where
pure x = Right x
bind (Right x) mab = mab x
bind (Left x) mab = Left x
instance Monad Maybe where
pure x = Just x
bind Nothing mab = Nothing
bind (Just x) mab = mab x
elem : a. {{Eq a}} a List a Bool
elem v Nil = False
elem v (x :: xs) = if v == x then True else elem v xs
-- TODO no empty value on my `Add`, I need a group..
-- sum : ∀ a. {{Add a}} → List a → a
-- sum xs = foldl _+_
pfunc trace uses (debugStr) : a. String -> a -> a := `(_, msg, a) => { console.log(msg,debugStr(_,a)); return a }`
mapMaybe : a b. (a Maybe b) List a List b
mapMaybe f Nil = Nil
mapMaybe f (x :: xs) = case f x of
Just y => y :: mapMaybe f xs
Nothing => mapMaybe f xs
zip : a b. List a List b List (a × b)
zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys
zip _ _ = Nil
-- TODO add double literals
ptype Double
pfunc intToDouble : Int Double := `(x) => x`
pfunc doubleToInt : Double Int := `(x) => x`
pfunc addDouble : Double Double Double := `(x,y) => x + y`
pfunc subDouble : Double Double Double := `(x,y) => x - y`
pfunc mulDouble : Double Double Double := `(x,y) => x * y`
pfunc divDouble : Double Double Double := `(x,y) => x / y`
pfunc sqrtDouble : Double Double := `(x) => Math.sqrt(x)`
pfunc ceilDouble : Double Double := `(x) => Math.ceil(x)`
instance Add Double where x + y = addDouble x y
instance Sub Double where x - y = subDouble x y
instance Mul Double where x * y = mulDouble x y
instance Div Double where x / y = divDouble x y
ptype IOArray : U U
pfunc newArray uses (MkIORes) : a. Int a IO (IOArray a) :=
`(_, n, v) => (w) => MkIORes(undefined,Array(n).fill(v),w)`
pfunc arrayGet : a. IOArray a Int IO a := `(_, arr, ix) => w => MkIORes(undefined, arr[ix], w)`
pfunc arraySet uses (MkUnit) : a. IOArray a Int a IO Unit := `(_, arr, ix, v) => w => {
arr[ix] = v
return MkIORes(undefined, MkUnit, w)
}`
pfunc ioArrayToList uses (Nil _::_ MkIORes) : {0 a} IOArray a IO (List a) := `(a,arr) => w => {
let rval = Nil(a)
for (let i = arr.length - 1;i >= 0; i--) {
rval = _$3A$3A_(a, arr[i], rval)
}
return MkIORes(undefined, rval, w)
}`
class Cast a b where
cast : a b
instance Cast Nat Int where
cast = natToInt
instance Cast Int Double where
cast = intToDouble
instance Applicative IO where
return a = \ w => MkIORes a w
f <*> a = \ w =>
let (MkIORes f w) = trace "fw" $ f w in
let (MkIORes a w) = trace "aw" $ a w in
MkIORes (f a) w
class Bifunctor (f : U U U) where
bimap : a b c d. (a c) (b d) f a b f c d
mapFst : a b c f. {{Bifunctor f}} (a c) f a b f c b
mapFst f ab = bimap f id ab
mapSnd : a b c f. {{Bifunctor f}} (b c) f a b f a c
mapSnd f ab = bimap id f ab
isNothing : a. Maybe a Bool
isNothing Nothing = True
isNothing _ = False
instance Bifunctor _×_ where
bimap f g (a,b) = (f a, g b)
instance Functor IO where
map f a = bind a $ \ a => pure (f a)
uncurry : a b c. (a -> b -> c) -> (a × b) -> c
uncurry f (a,b) = f a b

1
aoc2023/Prelude.newt Symbolic link
View File

@@ -0,0 +1 @@
../newt/Prelude.newt

View File

@@ -1 +1 @@
../aoc2023/Prelude.newt
../newt/Prelude.newt

View File

@@ -114,7 +114,7 @@ _>>=_ : {0 m} {{Monad m}} {0 a b} -> (m a) -> (a -> m b) -> m b
ma >>= amb = bind ma amb
_>>_ : {0 m} {{Monad m}} {0 a b} -> m a -> m b -> m b
ma >> mb = mb
ma >> mb = ma >>= (\ _ => mb)
join : m. {{Monad m}} {0 a} m (m a) m a
join mma = mma >>= id
@@ -162,7 +162,14 @@ class Applicative (f : U → U) where
_<*>_ : {0 a b} -> f (a b) f a f b
class Traversable (t : U U) where
traverse : {f : U U} {{appf : Applicative f}} {a : U} {b : U} (a f b) t a f (t b)
traverse : f a b. {{Applicative f}} (a f b) t a f (t b)
instance Traversable List where
traverse f Nil = return Nil
traverse f (x :: xs) = return _::_ <*> f x <*> traverse f xs
for : {t : U U} {f : U U} {{Traversable t}} {{appf : Applicative f}} {a : U} {b : U} t a (a f b) f (t b)
for stuff fun = traverse fun stuff
instance Applicative Maybe where
return a = Just a
@@ -187,10 +194,13 @@ infixl 7 _+_
class Add a where
_+_ : a a a
infixl 8 _*_
infixl 8 _*_ _/_
class Mul a where
_*_ : a a a
class Div a where
_/_ : a a a
instance Add Nat where
Z + m = m
S n + m = S (n + m)
@@ -305,6 +315,7 @@ instance Monad IO where
MkIORes a w => mab a w
pure a = \ w => MkIORes a w
bindList : a b. List a (a List b) List b
instance a. Concat (List a) where
@@ -383,11 +394,11 @@ pfunc pack : List Char → String := `(cs) => {
pfunc debugStr uses (natToInt listToArray) : a. a String := `(_, obj) => {
const go = (obj) => {
if (obj?.tag === '_::_') {
if (obj?.tag === '_::_' || obj?.tag === 'Nil') {
let stuff = listToArray(undefined,obj)
return '['+(stuff.map(go).join(', '))+']'
}
if (obj?.tag === 'S') {
if (obj?.tag === 'S' || obj?.tag === 'Z') {
return ''+natToInt(obj)
} else if (obj?.tag) {
let rval = '('+obj.tag
@@ -535,3 +546,84 @@ elem v (x :: xs) = if v == x then True else elem v xs
-- sum : ∀ a. {{Add a}} → List a → a
-- sum xs = foldl _+_
pfunc trace uses (debugStr) : a. String -> a -> a := `(_, msg, a) => { console.log(msg,debugStr(_,a)); return a }`
mapMaybe : a b. (a Maybe b) List a List b
mapMaybe f Nil = Nil
mapMaybe f (x :: xs) = case f x of
Just y => y :: mapMaybe f xs
Nothing => mapMaybe f xs
zip : a b. List a List b List (a × b)
zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys
zip _ _ = Nil
-- TODO add double literals
ptype Double
pfunc intToDouble : Int Double := `(x) => x`
pfunc doubleToInt : Double Int := `(x) => x`
pfunc addDouble : Double Double Double := `(x,y) => x + y`
pfunc subDouble : Double Double Double := `(x,y) => x - y`
pfunc mulDouble : Double Double Double := `(x,y) => x * y`
pfunc divDouble : Double Double Double := `(x,y) => x / y`
pfunc sqrtDouble : Double Double := `(x) => Math.sqrt(x)`
pfunc ceilDouble : Double Double := `(x) => Math.ceil(x)`
instance Add Double where x + y = addDouble x y
instance Sub Double where x - y = subDouble x y
instance Mul Double where x * y = mulDouble x y
instance Div Double where x / y = divDouble x y
ptype IOArray : U U
pfunc newArray uses (MkIORes) : a. Int a IO (IOArray a) :=
`(_, n, v) => (w) => MkIORes(undefined,Array(n).fill(v),w)`
pfunc arrayGet : a. IOArray a Int IO a := `(_, arr, ix) => w => MkIORes(undefined, arr[ix], w)`
pfunc arraySet uses (MkUnit) : a. IOArray a Int a IO Unit := `(_, arr, ix, v) => w => {
arr[ix] = v
return MkIORes(undefined, MkUnit, w)
}`
pfunc ioArrayToList uses (Nil _::_ MkIORes) : {0 a} IOArray a IO (List a) := `(a,arr) => w => {
let rval = Nil(a)
for (let i = arr.length - 1;i >= 0; i--) {
rval = _$3A$3A_(a, arr[i], rval)
}
return MkIORes(undefined, rval, w)
}`
class Cast a b where
cast : a b
instance Cast Nat Int where
cast = natToInt
instance Cast Int Double where
cast = intToDouble
instance Applicative IO where
return a = \ w => MkIORes a w
f <*> a = \ w =>
let (MkIORes f w) = trace "fw" $ f w in
let (MkIORes a w) = trace "aw" $ a w in
MkIORes (f a) w
class Bifunctor (f : U U U) where
bimap : a b c d. (a c) (b d) f a b f c d
mapFst : a b c f. {{Bifunctor f}} (a c) f a b f c b
mapFst f ab = bimap f id ab
mapSnd : a b c f. {{Bifunctor f}} (b c) f a b f a c
mapSnd f ab = bimap id f ab
isNothing : a. Maybe a Bool
isNothing Nothing = True
isNothing _ = False
instance Bifunctor _×_ where
bimap f g (a,b) = (f a, g b)
instance Functor IO where
map f a = bind a $ \ a => pure (f a)
uncurry : a b c. (a -> b -> c) -> (a × b) -> c
uncurry f (a,b) = f a b

View File

@@ -1,4 +1,5 @@
#!/bin/sh
mkdir -p public
echo build monaco worker
esbuild --bundle node_modules/monaco-editor/esm/vs/editor/editor.worker.js > public/workerMain.js
echo build newt worker

View File

@@ -1,566 +0,0 @@
module Prelude
id : a. a a
id x = x
data Bool : U where
True False : Bool
not : Bool Bool
not True = False
not False = True
-- In Idris, this is lazy in the second arg, we're not doing
-- magic laziness for now, it's messy
infixr 4 _||_
_||_ : Bool Bool Bool
True || _ = True
False || b = b
infixr 5 _&&_
_&&_ : Bool Bool Bool
False && b = False
True && b = b
infixl 6 _==_
class Eq a where
_==_ : a a Bool
infixl 6 _/=_
_/=_ : a. {{Eq a}} a a Bool
a /= b = not (a == b)
data Nat : U where
Z : Nat
S : Nat -> Nat
pred : Nat Nat
pred Z = Z
pred (S k) = k
instance Eq Nat where
Z == Z = True
S n == S m = n == m
x == y = False
data Maybe : U -> U where
Just : a. a -> Maybe a
Nothing : a. Maybe a
fromMaybe : a. a Maybe a a
fromMaybe a Nothing = a
fromMaybe _ (Just a) = a
data Either : U -> U -> U where
Left : {0 a b : U} -> a -> Either a b
Right : {0 a b : U} -> b -> Either a b
infixr 7 _::_
data List : U -> U where
Nil : A. List A
_::_ : A. A List A List A
length : a. List a Nat
length Nil = Z
length (x :: xs) = S (length xs)
infixl 7 _:<_
data SnocList : U U where
Lin : A. SnocList A
_:<_ : A. SnocList A A SnocList A
-- 'chips'
infixr 6 _<>>_
_<>>_ : a. SnocList a List a List a
Lin <>> ys = ys
(xs :< x) <>> ys = xs <>> x :: ys
-- This is now handled by the parser, and LHS becomes `f a`.
-- infixr 0 _$_
-- _$_ : ∀ a b. (a -> b) -> a -> b
-- f $ a = f a
infixr 8 _×_
infixr 2 _,_
data _×_ : U U U where
_,_ : A B. A B A × B
fst : a b. a × b a
fst (a,b) = a
snd : a b. a × b b
snd (a,b) = b
infixl 6 _<_ _<=_
class Ord a where
_<_ : a a Bool
instance Ord Nat where
_ < Z = False
Z < S _ = True
S n < S m = n < m
_<=_ : a. {{Eq a}} {{Ord a}} a a Bool
a <= b = a == b || a < b
-- Monad
class Monad (m : U U) where
bind : {0 a b} m a (a m b) m b
pure : {0 a} a m a
infixl 1 _>>=_ _>>_
_>>=_ : {0 m} {{Monad m}} {0 a b} -> (m a) -> (a -> m b) -> m b
ma >>= amb = bind ma amb
_>>_ : {0 m} {{Monad m}} {0 a b} -> m a -> m b -> m b
ma >> mb = mb
join : m. {{Monad m}} {0 a} m (m a) m a
join mma = mma >>= id
-- Equality
infixl 1 _≡_
data _≡_ : {A : U} -> A -> A -> U where
Refl : {A : U} -> {a : A} -> a a
replace : {A : U} {a b : A} -> (P : A -> U) -> a b -> P a -> P b
replace p Refl x = x
cong : {A B : U} {a b : A} -> (f : A -> B) -> a b -> f a f b
sym : {A : U} -> {a b : A} -> a b -> b a
sym Refl = Refl
-- Functor
class Functor (m : U U) where
map : {0 a b} (a b) m a m b
infixr 4 _<$>_
_<$>_ : {0 f} {{Functor f}} {0 a b} (a b) f a f b
f <$> ma = map f ma
instance Functor Maybe where
map f Nothing = Nothing
map f (Just a) = Just (f a)
instance Functor List where
map f Nil = Nil
map f (x :: xs) = f x :: map f xs
instance Functor SnocList where
map f Lin = Lin
map f (xs :< x) = map f xs :< f x
-- TODO this probably should depend on / entail Functor
infixl 3 _<*>_
class Applicative (f : U U) where
-- appIsFunctor : Functor f
return : {0 a} a f a
_<*>_ : {0 a b} -> f (a b) f a f b
class Traversable (t : U U) where
traverse : {f : U U} {{appf : Applicative f}} {a : U} {b : U} (a f b) t a f (t b)
instance Applicative Maybe where
return a = Just a
Nothing <*> _ = Nothing
Just f <*> fa = f <$> fa
infixr 2 _<|>_
class Alternative (m : U U) where
_<|>_ : {0 a} m a m a m a
instance Alternative Maybe where
Nothing <|> x = x
Just x <|> _ = Just x
-- Semigroup
infixl 8 _<+>_
class Semigroup a where
_<+>_ : a a a
infixl 7 _+_
class Add a where
_+_ : a a a
infixl 8 _*_ _/_
class Mul a where
_*_ : a a a
class Div a where
_/_ : a a a
instance Add Nat where
Z + m = m
S n + m = S (n + m)
instance Mul Nat where
Z * _ = Z
S n * m = m + n * m
infixl 7 _-_
class Sub a where
_-_ : a a a
instance Sub Nat where
Z - m = Z
n - Z = n
S n - S m = n - m
infixr 7 _++_
class Concat a where
_++_ : a a a
ptype String
ptype Int
ptype Char
pfunc sconcat : String String String := `(x,y) => x + y`
instance Concat String where
_++_ = sconcat
pfunc jsEq uses (True False) : a. a a Bool := `(_, a, b) => a == b ? True : False`
instance Eq Int where
a == b = jsEq a b
instance Eq String where
a == b = jsEq a b
instance Eq Char where
a == b = jsEq a b
data Unit : U where
MkUnit : Unit
ptype Array : U U
pfunc listToArray : {a : U} -> List a -> Array a := `
(a, l) => {
let rval = []
while (l.tag !== 'Nil') {
rval.push(l.h1)
l = l.h2
}
return rval
}
`
pfunc alen : {0 a : U} -> Array a -> Int := `(a,arr) => arr.length`
pfunc aget : {0 a : U} -> Array a -> Int -> a := `(a, arr, ix) => arr[ix]`
pfunc aempty : {0 a : U} -> Unit -> Array a := `() => []`
pfunc arrayToList uses (Nil _::_) : {0 a} Array a List a := `(a,arr) => {
let rval = Nil(a)
for (let i = arr.length - 1;i >= 0; i--) {
rval = _$3A$3A_(a, arr[i], rval)
}
return rval
}`
-- for now I'll run this in JS
pfunc lines : String List String := `(s) => arrayToList(s.split('\n'))`
pfunc p_strHead : (s : String) -> Char := `(s) => s[0]`
pfunc p_strTail : (s : String) -> String := `(s) => s[0]`
pfunc trim : String -> String := `s => s.trim()`
pfunc split uses (Nil _::_) : String -> String -> List String := `(s, by) => {
let parts = s.split(by)
let rval = Nil(String)
parts.reverse()
parts.forEach(p => { rval = _$3A$3A_(undefined, p, rval) })
return rval
}`
pfunc slen : String -> Int := `s => s.length`
pfunc sindex : String -> Int -> Char := `(s,i) => s[i]`
-- TODO represent Nat as number at runtime
pfunc natToInt : Nat -> Int := `(n) => {
let rval = 0
while (n.tag === 'S') {
n = n.h0
rval++
}
return rval
}`
pfunc fastConcat : List String String := `(xs) => listToArray(undefined, xs).join('')`
pfunc replicate : Nat -> Char String := `(n,c) => c.repeat(natToInt(n))`
-- I don't want to use an empty type because it would be a proof of void
ptype World
data IORes : U -> U where
MkIORes : {a : U} -> a -> World -> IORes a
IO : U -> U
IO a = World -> IORes a
instance Monad IO where
bind ma mab = \ w => case ma w of
MkIORes a w => mab a w
pure a = \ w => MkIORes a w
bindList : a b. List a (a List b) List b
instance a. Concat (List a) where
Nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
instance Monad List where
pure a = a :: Nil
bind Nil amb = Nil
bind (x :: xs) amb = amb x ++ bind xs amb
-- This is traverse, but we haven't defined Traversable yet
mapA : m. {{Applicative m}} {0 a b} (a m b) List a m (List b)
mapA f Nil = return Nil
mapA f (x :: xs) = return _::_ <*> f x <*> mapA f xs
mapM : m. {{Monad m}} {0 a b} (a m b) List a m (List b)
mapM f Nil = pure Nil
mapM f (x :: xs) = do
b <- f x
bs <- mapM f xs
pure (b :: bs)
class HasIO (m : U -> U) where
liftIO : a. IO a m a
instance HasIO IO where
liftIO a = a
pfunc debugLog uses (MkIORes MkUnit) : a. a -> IO Unit := `(_,s) => (w) => {
console.log(s)
return MkIORes(undefined,MkUnit,w)
}`
pfunc primPutStrLn uses (MkIORes MkUnit) : String -> IO Unit := `(s) => (w) => {
console.log(s)
return MkIORes(undefined,MkUnit,w)
}`
putStrLn : io. {{HasIO io}} -> String -> io Unit
putStrLn s = liftIO (primPutStrLn s)
pfunc showInt : Int -> String := `(i) => String(i)`
class Show a where
show : a String
instance Show String where
show a = a
instance Show Int where
show = showInt
pfunc ord : Char -> Int := `(c) => c.charCodeAt(0)`
pfunc unpack : String -> List Char
:= `(s) => {
let acc = Nil(Char)
for (let i = s.length - 1; 0 <= i; i--) acc = _$3A$3A_(Char, s[i], acc)
return acc
}`
pfunc pack : List Char String := `(cs) => {
let rval = ''
while (cs.tag === '_::_') {
rval += cs.h1
cs = cs.h2
}
return rval
}
`
pfunc debugStr uses (natToInt listToArray) : a. a String := `(_, obj) => {
const go = (obj) => {
if (obj?.tag === '_::_') {
let stuff = listToArray(undefined,obj)
return '['+(stuff.map(go).join(', '))+']'
}
if (obj?.tag === 'S') {
return ''+natToInt(obj)
} else if (obj?.tag) {
let rval = '('+obj.tag
for(let i=0;;i++) {
let key = 'h'+i
if (!(key in obj)) break
rval += ' ' + go(obj[key])
}
return rval+')'
} else {
return JSON.stringify(obj)
}
}
return go(obj)
}`
pfunc stringToInt : String Int := `(s) => {
let rval = Number(s)
if (isNaN(rval)) throw new Error(s + " is NaN")
return rval
}`
foldl : A B. (B -> A -> B) -> B -> List A -> B
foldl f acc Nil = acc
foldl f acc (x :: xs) = foldl f (f acc x) xs
infixl 9 _∘_
_∘_ : {A B C : U} -> (B -> C) -> (A -> B) -> A -> C
(f g) x = f (g x)
pfunc addInt : Int Int Int := `(x,y) => x + y`
pfunc mulInt : Int Int Int := `(x,y) => x * y`
pfunc subInt : Int Int Int := `(x,y) => x - y`
pfunc ltInt uses (True False) : Int Int Bool := `(x,y) => x < y ? True : False`
instance Mul Int where
x * y = mulInt x y
instance Add Int where
x + y = addInt x y
instance Sub Int where
x - y = subInt x y
instance Ord Int where
x < y = ltInt x y
printLn : {m} {{HasIO m}} {a} {{Show a}} a m Unit
printLn a = putStrLn (show a)
-- opaque JSObject
ptype JSObject
reverse : a. List a List a
reverse {a} = go Nil
where
go : List a List a List a
go acc Nil = acc
go acc (x :: xs) = go (x :: acc) xs
-- Like Idris1, but not idris2, we need {a} to put a in scope.
span : a. (a -> Bool) -> List a -> List a × List a
span {a} f xs = go xs Nil
where
go : List a -> List a -> List a × List a
go Nil left = (reverse left, Nil)
go (x :: xs) left = if f x
then go xs (x :: left)
else (reverse left, x :: xs)
instance Show Nat where
show n = show (natToInt n)
enumerate : a. List a List (Nat × a)
enumerate {a} xs = go Z xs
where
go : Nat List a List (Nat × a)
go k Nil = Nil
go k (x :: xs) = (k,x) :: go (S k) xs
filter : a. (a Bool) List a List a
filter pred Nil = Nil
filter pred (x :: xs) = if pred x then x :: filter pred xs else filter pred xs
drop : a. Nat -> List a -> List a
drop _ Nil = Nil
drop Z xs = xs
drop (S k) (x :: xs) = drop k xs
take : a. Nat -> List a -> List a
take Z xs = Nil
take _ Nil = Nil
take (S k) (x :: xs) = x :: take k xs
getAt : a. Nat List a Maybe a
getAt _ Nil = Nothing
getAt Z (x :: xs) = Just x
getAt (S k) (x :: xs) = getAt k xs
splitOn : a. {{Eq a}} a List a List (List a)
splitOn {a} v xs = go Nil xs
where
go : List a List a List (List a)
go acc Nil = reverse acc :: Nil
go acc (x :: xs) = if x == v
then reverse acc :: go Nil xs
else go (x :: acc) xs
class Inhabited a where
default : a
instance a. Inhabited (List a) where
default = Nil
getAt! : a. {{Inhabited a}} Nat List a a
getAt! _ Nil = default
getAt! Z (x :: xs) = x
getAt! (S k) (x :: xs) = getAt! k xs
instance a. Applicative (Either a) where
return b = Right b
Right x <*> Right y = Right (x y)
Left x <*> _ = Left x
Right x <*> Left y = Left y
instance a. Monad (Either a) where
pure x = Right x
bind (Right x) mab = mab x
bind (Left x) mab = Left x
instance Monad Maybe where
pure x = Just x
bind Nothing mab = Nothing
bind (Just x) mab = mab x
elem : a. {{Eq a}} a List a Bool
elem v Nil = False
elem v (x :: xs) = if v == x then True else elem v xs
-- TODO no empty value on my `Add`, I need a group..
-- sum : ∀ a. {{Add a}} → List a → a
-- sum xs = foldl _+_
pfunc trace uses (debugStr) : a. String -> a -> a := `(_, msg, a) => { console.log(msg,debugStr(_,a)); return a }`
mapMaybe : a b. (a Maybe b) List a List b
mapMaybe f Nil = Nil
mapMaybe f (x :: xs) = case f x of
Just y => y :: mapMaybe f xs
Nothing => mapMaybe f xs
zip : a b. List a List b List (a × b)
zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys
zip _ _ = Nil
-- TODO add double literals
ptype Double
pfunc intToDouble : Int Double := `(x) => x`
pfunc doubleToInt : Double Int := `(x) => x`
pfunc addDouble : Double Double Double := `(x,y) => x + y`
pfunc subDouble : Double Double Double := `(x,y) => x - y`
pfunc mulDouble : Double Double Double := `(x,y) => x * y`
pfunc divDouble : Double Double Double := `(x,y) => x / y`
pfunc sqrtDouble : Double Double := `(x) => Math.sqrt(x)`
pfunc ceilDouble : Double Double := `(x) => Math.ceil(x)`
instance Add Double where x + y = addDouble x y
instance Sub Double where x - y = subDouble x y
instance Mul Double where x * y = mulDouble x y
instance Div Double where x / y = divDouble x y

View File

@@ -0,0 +1 @@
../../newt/Prelude.newt

View File

@@ -1,566 +0,0 @@
module Prelude
id : a. a a
id x = x
data Bool : U where
True False : Bool
not : Bool Bool
not True = False
not False = True
-- In Idris, this is lazy in the second arg, we're not doing
-- magic laziness for now, it's messy
infixr 4 _||_
_||_ : Bool Bool Bool
True || _ = True
False || b = b
infixr 5 _&&_
_&&_ : Bool Bool Bool
False && b = False
True && b = b
infixl 6 _==_
class Eq a where
_==_ : a a Bool
infixl 6 _/=_
_/=_ : a. {{Eq a}} a a Bool
a /= b = not (a == b)
data Nat : U where
Z : Nat
S : Nat -> Nat
pred : Nat Nat
pred Z = Z
pred (S k) = k
instance Eq Nat where
Z == Z = True
S n == S m = n == m
x == y = False
data Maybe : U -> U where
Just : a. a -> Maybe a
Nothing : a. Maybe a
fromMaybe : a. a Maybe a a
fromMaybe a Nothing = a
fromMaybe _ (Just a) = a
data Either : U -> U -> U where
Left : {0 a b : U} -> a -> Either a b
Right : {0 a b : U} -> b -> Either a b
infixr 7 _::_
data List : U -> U where
Nil : A. List A
_::_ : A. A List A List A
length : a. List a Nat
length Nil = Z
length (x :: xs) = S (length xs)
infixl 7 _:<_
data SnocList : U U where
Lin : A. SnocList A
_:<_ : A. SnocList A A SnocList A
-- 'chips'
infixr 6 _<>>_
_<>>_ : a. SnocList a List a List a
Lin <>> ys = ys
(xs :< x) <>> ys = xs <>> x :: ys
-- This is now handled by the parser, and LHS becomes `f a`.
-- infixr 0 _$_
-- _$_ : ∀ a b. (a -> b) -> a -> b
-- f $ a = f a
infixr 8 _×_
infixr 2 _,_
data _×_ : U U U where
_,_ : A B. A B A × B
fst : a b. a × b a
fst (a,b) = a
snd : a b. a × b b
snd (a,b) = b
infixl 6 _<_ _<=_
class Ord a where
_<_ : a a Bool
instance Ord Nat where
_ < Z = False
Z < S _ = True
S n < S m = n < m
_<=_ : a. {{Eq a}} {{Ord a}} a a Bool
a <= b = a == b || a < b
-- Monad
class Monad (m : U U) where
bind : {0 a b} m a (a m b) m b
pure : {0 a} a m a
infixl 1 _>>=_ _>>_
_>>=_ : {0 m} {{Monad m}} {0 a b} -> (m a) -> (a -> m b) -> m b
ma >>= amb = bind ma amb
_>>_ : {0 m} {{Monad m}} {0 a b} -> m a -> m b -> m b
ma >> mb = mb
join : m. {{Monad m}} {0 a} m (m a) m a
join mma = mma >>= id
-- Equality
infixl 1 _≡_
data _≡_ : {A : U} -> A -> A -> U where
Refl : {A : U} -> {a : A} -> a a
replace : {A : U} {a b : A} -> (P : A -> U) -> a b -> P a -> P b
replace p Refl x = x
cong : {A B : U} {a b : A} -> (f : A -> B) -> a b -> f a f b
sym : {A : U} -> {a b : A} -> a b -> b a
sym Refl = Refl
-- Functor
class Functor (m : U U) where
map : {0 a b} (a b) m a m b
infixr 4 _<$>_
_<$>_ : {0 f} {{Functor f}} {0 a b} (a b) f a f b
f <$> ma = map f ma
instance Functor Maybe where
map f Nothing = Nothing
map f (Just a) = Just (f a)
instance Functor List where
map f Nil = Nil
map f (x :: xs) = f x :: map f xs
instance Functor SnocList where
map f Lin = Lin
map f (xs :< x) = map f xs :< f x
-- TODO this probably should depend on / entail Functor
infixl 3 _<*>_
class Applicative (f : U U) where
-- appIsFunctor : Functor f
return : {0 a} a f a
_<*>_ : {0 a b} -> f (a b) f a f b
class Traversable (t : U U) where
traverse : {f : U U} {{appf : Applicative f}} {a : U} {b : U} (a f b) t a f (t b)
instance Applicative Maybe where
return a = Just a
Nothing <*> _ = Nothing
Just f <*> fa = f <$> fa
infixr 2 _<|>_
class Alternative (m : U U) where
_<|>_ : {0 a} m a m a m a
instance Alternative Maybe where
Nothing <|> x = x
Just x <|> _ = Just x
-- Semigroup
infixl 8 _<+>_
class Semigroup a where
_<+>_ : a a a
infixl 7 _+_
class Add a where
_+_ : a a a
infixl 8 _*_ _/_
class Mul a where
_*_ : a a a
class Div a where
_/_ : a a a
instance Add Nat where
Z + m = m
S n + m = S (n + m)
instance Mul Nat where
Z * _ = Z
S n * m = m + n * m
infixl 7 _-_
class Sub a where
_-_ : a a a
instance Sub Nat where
Z - m = Z
n - Z = n
S n - S m = n - m
infixr 7 _++_
class Concat a where
_++_ : a a a
ptype String
ptype Int
ptype Char
pfunc sconcat : String String String := `(x,y) => x + y`
instance Concat String where
_++_ = sconcat
pfunc jsEq uses (True False) : a. a a Bool := `(_, a, b) => a == b ? True : False`
instance Eq Int where
a == b = jsEq a b
instance Eq String where
a == b = jsEq a b
instance Eq Char where
a == b = jsEq a b
data Unit : U where
MkUnit : Unit
ptype Array : U U
pfunc listToArray : {a : U} -> List a -> Array a := `
(a, l) => {
let rval = []
while (l.tag !== 'Nil') {
rval.push(l.h1)
l = l.h2
}
return rval
}
`
pfunc alen : {0 a : U} -> Array a -> Int := `(a,arr) => arr.length`
pfunc aget : {0 a : U} -> Array a -> Int -> a := `(a, arr, ix) => arr[ix]`
pfunc aempty : {0 a : U} -> Unit -> Array a := `() => []`
pfunc arrayToList uses (Nil _::_) : {0 a} Array a List a := `(a,arr) => {
let rval = Nil(a)
for (let i = arr.length - 1;i >= 0; i--) {
rval = _$3A$3A_(a, arr[i], rval)
}
return rval
}`
-- for now I'll run this in JS
pfunc lines : String List String := `(s) => arrayToList(s.split('\n'))`
pfunc p_strHead : (s : String) -> Char := `(s) => s[0]`
pfunc p_strTail : (s : String) -> String := `(s) => s[0]`
pfunc trim : String -> String := `s => s.trim()`
pfunc split uses (Nil _::_) : String -> String -> List String := `(s, by) => {
let parts = s.split(by)
let rval = Nil(String)
parts.reverse()
parts.forEach(p => { rval = _$3A$3A_(undefined, p, rval) })
return rval
}`
pfunc slen : String -> Int := `s => s.length`
pfunc sindex : String -> Int -> Char := `(s,i) => s[i]`
-- TODO represent Nat as number at runtime
pfunc natToInt : Nat -> Int := `(n) => {
let rval = 0
while (n.tag === 'S') {
n = n.h0
rval++
}
return rval
}`
pfunc fastConcat : List String String := `(xs) => listToArray(undefined, xs).join('')`
pfunc replicate : Nat -> Char String := `(n,c) => c.repeat(natToInt(n))`
-- I don't want to use an empty type because it would be a proof of void
ptype World
data IORes : U -> U where
MkIORes : {a : U} -> a -> World -> IORes a
IO : U -> U
IO a = World -> IORes a
instance Monad IO where
bind ma mab = \ w => case ma w of
MkIORes a w => mab a w
pure a = \ w => MkIORes a w
bindList : a b. List a (a List b) List b
instance a. Concat (List a) where
Nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
instance Monad List where
pure a = a :: Nil
bind Nil amb = Nil
bind (x :: xs) amb = amb x ++ bind xs amb
-- This is traverse, but we haven't defined Traversable yet
mapA : m. {{Applicative m}} {0 a b} (a m b) List a m (List b)
mapA f Nil = return Nil
mapA f (x :: xs) = return _::_ <*> f x <*> mapA f xs
mapM : m. {{Monad m}} {0 a b} (a m b) List a m (List b)
mapM f Nil = pure Nil
mapM f (x :: xs) = do
b <- f x
bs <- mapM f xs
pure (b :: bs)
class HasIO (m : U -> U) where
liftIO : a. IO a m a
instance HasIO IO where
liftIO a = a
pfunc debugLog uses (MkIORes MkUnit) : a. a -> IO Unit := `(_,s) => (w) => {
console.log(s)
return MkIORes(undefined,MkUnit,w)
}`
pfunc primPutStrLn uses (MkIORes MkUnit) : String -> IO Unit := `(s) => (w) => {
console.log(s)
return MkIORes(undefined,MkUnit,w)
}`
putStrLn : io. {{HasIO io}} -> String -> io Unit
putStrLn s = liftIO (primPutStrLn s)
pfunc showInt : Int -> String := `(i) => String(i)`
class Show a where
show : a String
instance Show String where
show a = a
instance Show Int where
show = showInt
pfunc ord : Char -> Int := `(c) => c.charCodeAt(0)`
pfunc unpack : String -> List Char
:= `(s) => {
let acc = Nil(Char)
for (let i = s.length - 1; 0 <= i; i--) acc = _$3A$3A_(Char, s[i], acc)
return acc
}`
pfunc pack : List Char String := `(cs) => {
let rval = ''
while (cs.tag === '_::_') {
rval += cs.h1
cs = cs.h2
}
return rval
}
`
pfunc debugStr uses (natToInt listToArray) : a. a String := `(_, obj) => {
const go = (obj) => {
if (obj?.tag === '_::_') {
let stuff = listToArray(undefined,obj)
return '['+(stuff.map(go).join(', '))+']'
}
if (obj?.tag === 'S') {
return ''+natToInt(obj)
} else if (obj?.tag) {
let rval = '('+obj.tag
for(let i=0;;i++) {
let key = 'h'+i
if (!(key in obj)) break
rval += ' ' + go(obj[key])
}
return rval+')'
} else {
return JSON.stringify(obj)
}
}
return go(obj)
}`
pfunc stringToInt : String Int := `(s) => {
let rval = Number(s)
if (isNaN(rval)) throw new Error(s + " is NaN")
return rval
}`
foldl : A B. (B -> A -> B) -> B -> List A -> B
foldl f acc Nil = acc
foldl f acc (x :: xs) = foldl f (f acc x) xs
infixl 9 _∘_
_∘_ : {A B C : U} -> (B -> C) -> (A -> B) -> A -> C
(f g) x = f (g x)
pfunc addInt : Int Int Int := `(x,y) => x + y`
pfunc mulInt : Int Int Int := `(x,y) => x * y`
pfunc subInt : Int Int Int := `(x,y) => x - y`
pfunc ltInt uses (True False) : Int Int Bool := `(x,y) => x < y ? True : False`
instance Mul Int where
x * y = mulInt x y
instance Add Int where
x + y = addInt x y
instance Sub Int where
x - y = subInt x y
instance Ord Int where
x < y = ltInt x y
printLn : {m} {{HasIO m}} {a} {{Show a}} a m Unit
printLn a = putStrLn (show a)
-- opaque JSObject
ptype JSObject
reverse : a. List a List a
reverse {a} = go Nil
where
go : List a List a List a
go acc Nil = acc
go acc (x :: xs) = go (x :: acc) xs
-- Like Idris1, but not idris2, we need {a} to put a in scope.
span : a. (a -> Bool) -> List a -> List a × List a
span {a} f xs = go xs Nil
where
go : List a -> List a -> List a × List a
go Nil left = (reverse left, Nil)
go (x :: xs) left = if f x
then go xs (x :: left)
else (reverse left, x :: xs)
instance Show Nat where
show n = show (natToInt n)
enumerate : a. List a List (Nat × a)
enumerate {a} xs = go Z xs
where
go : Nat List a List (Nat × a)
go k Nil = Nil
go k (x :: xs) = (k,x) :: go (S k) xs
filter : a. (a Bool) List a List a
filter pred Nil = Nil
filter pred (x :: xs) = if pred x then x :: filter pred xs else filter pred xs
drop : a. Nat -> List a -> List a
drop _ Nil = Nil
drop Z xs = xs
drop (S k) (x :: xs) = drop k xs
take : a. Nat -> List a -> List a
take Z xs = Nil
take _ Nil = Nil
take (S k) (x :: xs) = x :: take k xs
getAt : a. Nat List a Maybe a
getAt _ Nil = Nothing
getAt Z (x :: xs) = Just x
getAt (S k) (x :: xs) = getAt k xs
splitOn : a. {{Eq a}} a List a List (List a)
splitOn {a} v xs = go Nil xs
where
go : List a List a List (List a)
go acc Nil = reverse acc :: Nil
go acc (x :: xs) = if x == v
then reverse acc :: go Nil xs
else go (x :: acc) xs
class Inhabited a where
default : a
instance a. Inhabited (List a) where
default = Nil
getAt! : a. {{Inhabited a}} Nat List a a
getAt! _ Nil = default
getAt! Z (x :: xs) = x
getAt! (S k) (x :: xs) = getAt! k xs
instance a. Applicative (Either a) where
return b = Right b
Right x <*> Right y = Right (x y)
Left x <*> _ = Left x
Right x <*> Left y = Left y
instance a. Monad (Either a) where
pure x = Right x
bind (Right x) mab = mab x
bind (Left x) mab = Left x
instance Monad Maybe where
pure x = Just x
bind Nothing mab = Nothing
bind (Just x) mab = mab x
elem : a. {{Eq a}} a List a Bool
elem v Nil = False
elem v (x :: xs) = if v == x then True else elem v xs
-- TODO no empty value on my `Add`, I need a group..
-- sum : ∀ a. {{Add a}} → List a → a
-- sum xs = foldl _+_
pfunc trace uses (debugStr) : a. String -> a -> a := `(_, msg, a) => { console.log(msg,debugStr(_,a)); return a }`
mapMaybe : a b. (a Maybe b) List a List b
mapMaybe f Nil = Nil
mapMaybe f (x :: xs) = case f x of
Just y => y :: mapMaybe f xs
Nothing => mapMaybe f xs
zip : a b. List a List b List (a × b)
zip (x :: xs) (y :: ys) = (x,y) :: zip xs ys
zip _ _ = Nil
-- TODO add double literals
ptype Double
pfunc intToDouble : Int Double := `(x) => x`
pfunc doubleToInt : Double Int := `(x) => x`
pfunc addDouble : Double Double Double := `(x,y) => x + y`
pfunc subDouble : Double Double Double := `(x,y) => x - y`
pfunc mulDouble : Double Double Double := `(x,y) => x * y`
pfunc divDouble : Double Double Double := `(x,y) => x / y`
pfunc sqrtDouble : Double Double := `(x) => Math.sqrt(x)`
pfunc ceilDouble : Double Double := `(x) => Math.ceil(x)`
instance Add Double where x + y = addDouble x y
instance Sub Double where x - y = subDouble x y
instance Mul Double where x * y = mulDouble x y
instance Div Double where x / y = divDouble x y