Files
newt/src/Lib/CompileExp.newt

141 lines
4.6 KiB
Agda

-- First pass of compilation
-- - work out arities and fully apply functions / constructors (currying)
-- currying is problemmatic because we need to insert lambdas (η-expand) and
-- it breaks all of the de Bruijn indices
-- - expand metas (this is happening earlier)
-- - erase stuff (there is another copy that essentially does the same thing)
-- I could make names unique (e.q. on lambdas), but I might want that to vary per backend?
module Lib.CompileExp
import Prelude
import Lib.Common
import Lib.Types -- Name / Tm
import Lib.TopContext
import Lib.Prettier
import Lib.Util
import Lib.Ref2
import Data.SortedMap
CExp : U
data CAlt : U where
CConAlt : String -> List String -> CExp -> CAlt
-- REVIEW keep var name?
CDefAlt : CExp -> CAlt
-- literal
CLitAlt : Literal -> CExp -> CAlt
data CExp : U where
CBnd : Int -> CExp
CLam : Name -> CExp -> CExp
CFun : List Name -> CExp -> CExp
CApp : CExp -> List CExp -> Int -> CExp
CCase : CExp -> List CAlt -> CExp
CRef : Name -> CExp
CMeta : Int -> CExp
CLit : Literal -> CExp
CLet : Name -> CExp -> CExp -> CExp
CLetRec : Name -> CExp -> CExp -> CExp
CErased : CExp
-- I'm counting Lam in the term for arity. This matches what I need in
-- code gen.
lamArity : Tm -> Nat
lamArity (Lam _ _ _ _ t) = S (lamArity t)
lamArity _ = Z
-- This is how much we want to curry at top level
-- leading lambda Arity is used for function defs and metas
-- TODO - figure out how this will work with erasure
arityForName : {{Ref2 Defs St}} FC -> QName -> M Nat
arityForName fc nm = do
defs <- getRef Defs
case lookupMap' nm defs of
Nothing => error fc "Name \{show nm} not in scope"
(Just Axiom) => pure Z
(Just (TCon arity strs)) => pure $ cast arity
(Just (DCon k str)) => pure $ cast k
(Just (Fn t)) => pure $ lamArity t
(Just (PrimTCon arity)) => pure $ cast arity
(Just (PrimFn t arity used)) => pure arity
compileTerm : {{Ref2 Defs St}} Tm -> M CExp
-- need to eta out extra args, fill in the rest of the apps
apply : CExp -> List CExp -> SnocList CExp -> Nat -> M CExp
-- out of args, make one up (fix that last arg)
apply t Nil acc (S k) = pure $ CApp t (acc <>> Nil) (1 + cast k)
apply t (x :: xs) acc (S k) = apply t xs (acc :< x) k
-- once we hit zero, we fold the rest
apply t ts acc Z = go (CApp t (acc <>> Nil) 0) ts
where
go : CExp -> List CExp -> M CExp
-- drop zero arg call
go (CApp t Nil 0) args = go t args
go t Nil = pure t
go t (arg :: args) = go (CApp t (arg :: Nil) 0) args
compileTerm (Bnd _ k) = pure $ CBnd k
-- need to eta expand to arity
compileTerm t@(Ref fc nm) = do
arity <- arityForName fc nm
case arity of
-- we don't need to curry functions that take one argument
(S Z) => pure $ CRef (show nm)
_ => apply (CRef (show nm)) Nil Lin arity
compileTerm (Meta _ k) = pure $ CRef "meta$\{show k}" -- FIXME
compileTerm (Lam _ nm _ _ t) = CLam nm <$> compileTerm t
compileTerm tm@(App _ _ _) = case funArgs tm of
(Meta _ k, args) => do
error (getFC tm) "Compiling an unsolved meta \{show tm}"
-- info (getFC tm) "Compiling an unsolved meta \{show tm}"
-- pure $ CApp (CRef "Meta\{show k}") Nil 0
(t@(Ref fc nm), args) => do
args' <- traverse compileTerm args
arity <- arityForName fc nm
apply (CRef (show nm)) args' Lin arity
(t, args) => do
debug $ \ _ => "apply other \{render 90 $ pprint Nil t}"
t' <- compileTerm t
args' <- traverse compileTerm args
apply t' args' Lin Z
-- error (getFC t) "Don't know how to apply \{showTm t}"
compileTerm (UU _) = pure $ CRef "U"
compileTerm (Pi _ nm icit rig t u) = do
t' <- compileTerm t
u' <- compileTerm u
pure $ CApp (CRef "PiType") (t' :: CLam nm u' :: Nil) 0
compileTerm (Case _ t alts) = do
t' <- compileTerm t
alts' <- for alts $ \case
CaseDefault tm => CDefAlt <$> compileTerm tm
-- we use the base name for the tag, some primitives assume this
CaseCons (QN ns nm) args tm => CConAlt nm args <$> compileTerm tm
CaseLit lit tm => CLitAlt lit <$> compileTerm tm
pure $ CCase t' alts'
compileTerm (Lit _ lit) = pure $ CLit lit
compileTerm (Let _ nm t u) = do
t' <- compileTerm t
u' <- compileTerm u
pure $ CLet nm t' u'
compileTerm (LetRec _ nm _ t u) = do
t' <- compileTerm t
u' <- compileTerm u
pure $ CLetRec nm t' u'
compileTerm (Erased _) = pure CErased
compileFun : {{Ref2 Defs St}} Tm -> M CExp
compileFun tm = go tm Lin
where
go : Tm -> SnocList String -> M CExp
go (Lam _ nm _ _ t) acc = go t (acc :< nm)
go tm Lin = compileTerm tm
go tm args = CFun (args <>> Nil) <$> compileTerm tm