Files
newt/tests/Tree.newt

98 lines
2.6 KiB
Agda

module Tree
-- adapted from Conor McBride's 2-3 tree example
-- youtube video: https://youtu.be/v2yXrOkzt5w?t=3013
data Nat : U where
Z : Nat
S : Nat -> Nat
data Unit : U where
MkUnit : Unit
data Void : U where
infixl 4 _+_
data _+_ : U -> U -> U where
inl : {A B} -> A -> A + B
inr : {A B} -> B -> A + B
infix 4 _<=_
_<=_ : Nat -> Nat -> U
Z <= y = Unit
S x <= Z = Void
S x <= S y = x <= y
cmp : (x y : Nat) -> (x <= y) + (y <= x)
cmp Z y = inl MkUnit
cmp (S z) Z = inr MkUnit
cmp (S x) (S y) = cmp x y
-- 53:21
data Bnd : U where
Bot : Bnd
N : Nat -> Bnd
Top : Bnd
infix 4 _<<=_
_<<=_ : Bnd -> Bnd -> U
Bot <<= _ = Unit
N x <<= N y = x <= y
_ <<= Top = Unit
_ <<= _ = Void
data Intv : Bnd -> Bnd -> U where
intv : {l u} (x : Nat) (lx : l <<= N x) (xu : N x <<= u) -> Intv l u
data T23 : Bnd -> Bnd -> Nat -> U where
leaf : {l u} (lu : l <<= u) -> T23 l u Z
node2 : {l u h} (x : _)
(tlx : T23 l (N x) h) (txu : T23 (N x) u h) ->
T23 l u (S h)
node3 : {l u h} (x y : _)
(tlx : T23 l (N x) h) (txy : T23 (N x) (N y) h) (tyu : T23 (N y) u h) ->
T23 l u (S h)
-- 56:
infixl 5 _*_
infixr 1 _,_
data Sg : (A : U) -> (A -> U) -> U where
_,_ : {A : U} {B : A -> U} -> (a : A) -> B a -> Sg A B
_*_ : U -> U -> U
A * B = Sg A (\ _ => B)
TooBig : Bnd -> Bnd -> Nat -> U
TooBig l u h = Sg Nat (\ x => T23 l (N x) h * T23 (N x) u h)
insert : {l u h} -> Intv l u -> T23 l u h -> TooBig l u h + T23 l u h
insert (intv x lx xu) (leaf lu) = inl (x , (leaf lx , leaf xu))
insert (intv x lx xu) (node2 y tly tyu) = case cmp x y of
-- u := N y is not solved at this time
-- The problem looks like
-- %v13 <= %v8 =?= N %v13 <<= (?m104 ...)
-- This might work if ?m104 is solved another way, so perhaps it could be postponed
inl xy => case insert (intv {_} {N y} x lx xy) tly of
inl (z , (tlz , tzy)) => inr (node3 z y tlz tzy tyu)
inr tly' => inr (node2 y tly' tyu)
inr yx => case insert (intv {N y} x yx xu) tyu of
inl (z , (tyz , tzu)) => inr (node3 y z tly tyz tzu)
inr tyu' => inr (node2 y tly tyu')
insert (intv x lx xu) (node3 y z tly tyz tzu) = case cmp x y of
inl xy => case insert (intv {_} {N y} x lx xy) tly of
inl (v , (tlv , tvy)) => inl (y , (node2 v tlv tvy , node2 z tyz tzu))
inr tly' => inr (node3 y z tly' tyz tzu)
inr yx => case cmp x z of
inl xz => case insert (intv {N y} {N z} x yx xz) tyz of
inl (w , (tyw , twz)) => inl (w , (node2 y tly tyw , node2 z twz tzu))
inr tyz' => inr (node3 y z tly tyz' tzu)
inr zx => case insert (intv {N z} x zx xu) tzu of
inl (w , (tzw , twu)) => inl (z , (node2 y tly tyz , node2 w tzw twu))
inr tzu' => inr (node3 y z tly tyz tzu')