Files
newt/port/Lib/Elab.newt

1509 lines
58 KiB
Agda
Raw Blame History

module Lib.Elab
import Lib.Parser.Impl
import Lib.Prettier
import Data.List
import Data.String
import Data.IORef
import Lib.Types
import Lib.Eval
import Lib.TopContext
import Lib.Syntax
vprint : Context -> Val -> M String
vprint ctx v = do
tm <- quote (length' ctx.env) v
pure $ render 90 $ pprint (names ctx) tm
-- collectDecl collects multiple Def for one function into one
collectDecl : List Decl -> List Decl
collectDecl Nil = Nil
collectDecl ((Def fc nm cl) :: rest@(Def _ nm' cl' :: xs)) =
if nm == nm' then collectDecl (Def fc nm (cl ++ cl') :: xs)
else (Def fc nm cl :: collectDecl rest)
collectDecl (x :: xs) = x :: collectDecl xs
rpprint : List String Tm String
rpprint names tm = render 90 $ pprint names tm
-- renaming
-- dom gamma ren
data Pden = PR Int Int (List Int)
showCtx : Context -> M String
showCtx ctx =
unlines reverse <$> go (names ctx) 0 (reverse $ zip ctx.env ctx.types) Nil
where
isVar : Int -> Val -> Bool
isVar k (VVar _ k' Lin) = k == k'
isVar _ _ = False
go : List String -> Int -> List (Val × String × Val) -> List String -> M (List String)
go _ _ Nil acc = pure acc
go names k ((v, n, ty) :: xs) acc = if isVar k v
-- TODO - use Doc and add <+/> as appropriate to printing
then do
tty <- quote ctx.lvl ty
go names (1 + k) xs (" \{n} : \{rpprint names tty}" :: acc)
else do
tm <- quote ctx.lvl v
tty <- quote ctx.lvl ty
go names (1 + k) xs (" \{n} = \{rpprint names tm} : \{rpprint names tty}" :: acc)
dumpCtx : Context -> M String
dumpCtx ctx = do
let names = (map fst ctx.types)
-- I want to know which ones are defines. I should skip the `=` bit if they match, I'll need indices in here too.
env <- for (zip ctx.env ctx.types) $ \case
(v, n, ty) => do
sty <- vprint ctx ty
sv <- vprint ctx v
pure " \{n} : \{sty} = \{sv}"
let msg = unlines (reverse env) -- ++ " -----------\n" ++ " goal \{rpprint names ty'}"
pure msg
-- return Bnd and type for name
lookupName : Context -> String -> Maybe (Tm × Val)
lookupName ctx name = go 0 ctx.types
where
go : Int -> List (String × Val) -> Maybe (Tm × Val)
go ix Nil = Nothing
-- FIXME - we should stuff a Binder of some sort into "types"
go ix ((nm, ty) :: xs) = if nm == name then Just (Bnd emptyFC ix, ty) else go (1 + ix) xs
lookupDef : Context -> String -> Maybe Val
lookupDef ctx name = go 0 ctx.types ctx.env
where
go : Int -> List (String × Val) -> List Val -> Maybe Val
go ix ((nm, ty) :: xs) (v :: vs) = if nm == name then Just v else go (1 + ix) xs vs
go ix _ _ = Nothing
-- IORef for metas needs IO
forceMeta : Val -> M Val
forceMeta (VMeta fc ix sp) = do
meta <- lookupMeta ix
case meta of
(Unsolved pos k xs _ _ _) => pure (VMeta fc ix sp)
(Solved _ k t) => vappSpine t sp >>= forceMeta
forceMeta x = pure x
record UnifyResult where
constructor MkResult
-- wild guess here - lhs is a VVar
constraints : List (Int × Val)
instance Semigroup UnifyResult where
(MkResult cs) <+> (MkResult cs') = MkResult (cs ++ cs')
instance Monoid UnifyResult where
neutral = MkResult Nil
data UnifyMode = UNormal | UPattern
check : Context -> Raw -> Val -> M Tm
unifyCatch : FC -> Context -> Val -> Val -> M Unit
-- Check that the arguments are not explicit and the type constructor in codomain matches
-- Later we will build a table of codomain type, and maybe make the user tag the candidates
-- like Idris does with %hint
isCandidate : Val -> Tm -> Bool
isCandidate ty (Pi fc nm Explicit rig t u) = False
isCandidate ty (Pi fc nm icit rig t u) = isCandidate ty u
isCandidate (VRef _ nm _ _) (Ref fc nm' def) = nm == nm'
isCandidate ty (App fc t u) = isCandidate ty t
isCandidate _ _ = False
-- This is a crude first pass
findMatches : Context -> Val -> List TopEntry -> M (List String)
findMatches ctx ty Nil = pure Nil
findMatches ctx ty ((MkEntry _ name type def) :: xs) = do
let (True) = isCandidate ty type | False => findMatches ctx ty xs
top <- get
-- let ctx = mkCtx (getFC ty)
-- FIXME we're restoring state, but the INFO logs have already been emitted
-- Also redo this whole thing to run during elab, recheck constraints, etc.
mc <- readIORef top.metaCtx
catchError(do
-- TODO sort out the FC here
let fc = getFC ty
debug $ \ _ => "TRY \{show name} : \{rpprint Nil type} for \{show ty}"
-- This check is solving metas, so we save mc below in case we want this solution
-- tm <- check (mkCtx fc) (RVar fc name) ty
-- FIXME RVar should optionally have qualified names
let (QN ns nm) = name
tm <- check ctx (RVar fc nm) ty
debug $ \ _ => "Found \{rpprint Nil tm} for \{show ty}"
writeIORef top.metaCtx mc
(_::_ nm) <$> findMatches ctx ty xs)
(\ err => do
debug $ \ _ => "No match \{show ty} \{rpprint Nil type} \{showError "" err}"
writeIORef top.metaCtx mc
findMatches ctx ty xs)
contextMatches : Context -> Val -> M (List (Tm × Val))
contextMatches ctx ty = go (zip ctx.env ctx.types)
where
go : List (Val × String × Val) -> M (List (Tm × Val))
go Nil = pure Nil
go ((tm, nm, vty) :: xs) = do
type <- quote ctx.lvl vty
let (True) = isCandidate ty type | False => go xs
top <- get
mc <- readIORef top.metaCtx
catchError(do
debug $ \ _ => "TRY context \{nm} : \{rpprint (names ctx) type} for \{show ty}"
unifyCatch (getFC ty) ctx ty vty
mc' <- readIORef top.metaCtx
writeIORef top.metaCtx mc
tm <- quote ctx.lvl tm
(_::_ (tm, vty)) <$> go xs)
(\ err => do
debug $ \ _ => "No match \{show ty} \{rpprint (names ctx) type} \{showError "" err}"
writeIORef top.metaCtx mc
go xs)
getArity : Tm -> Int
getArity (Pi x str icit rig t u) = 1 + getArity u
-- Ref or App (of type constructor) are valid
getArity _ = 0
-- Can metas live in context for now?
-- We'll have to be able to add them, which might put gamma in a ref
-- Makes the arg for `solve` when we solve an auto
makeSpine : Int -> List BD -> SnocList Val
makeSpine k Nil = Lin
makeSpine k (Defined :: xs) = makeSpine (k - 1) xs
makeSpine k (Bound :: xs) = makeSpine (k - 1) xs :< VVar emptyFC (k - 1) Lin
solve : Env -> (k : Int) -> SnocList Val -> Val -> M Unit
trySolveAuto : MetaEntry -> M Bool
trySolveAuto (Unsolved fc k ctx ty AutoSolve _) = do
debug $ \ _ => "TRYAUTO solving \{show k} : \{show ty}"
-- fill in solved metas in type
x <- quote ctx.lvl ty
ty <- eval ctx.env CBN x
debug $ \ _ => "AUTO ---> \{show ty}"
-- we want the context here too.
top <- get
Nil <- contextMatches ctx ty
| ((tm, vty) :: Nil) => do
unifyCatch (getFC ty) ctx ty vty
val <- eval ctx.env CBN tm
debug $ \ _ => "SOLUTION \{rpprint Nil tm} evaled to \{show val}"
let sp = makeSpine ctx.lvl ctx.bds
solve ctx.env k sp val
pure True
| res => do
debug $ \ _ => "FAILED to solve \{show ty}, matches: \{render 90 $ commaSep $ map (pprint Nil ∘ fst) res}"
pure False
(nm :: Nil) <- findMatches ctx ty $ map snd $ toList top.defs
| res => do
debug $ \ _ => "FAILED to solve \{show ty}, matches: \{show res}"
pure False
tm <- check ctx (RVar fc nm) ty
val <- eval ctx.env CBN tm
debug $ \ _ => "SOLUTION \{rpprint Nil tm} evaled to \{show val}"
let sp = makeSpine ctx.lvl ctx.bds
solve ctx.env k sp val
pure True
trySolveAuto _ = pure False
-- export
-- solveAutos : Int -> List MetaEntry -> M Unit
-- solveAutos mstart Nil = pure MkUnit
-- solveAutos mstart (entry :: es) = do
-- res <- trySolveAuto entry
-- -- idris is inlining this and blowing stack?
-- if res
-- then do
-- top <- get
-- mc <- readIORef top.metaCtx
-- let mlen = length mc.metas `minus` mstart
-- solveAutos mstart (take mlen mc.metas)
-- else
-- solveAutos mstart es
-- Called from ProcessDecl, this was popping the stack, the tail call optimization doesn't
-- handle the traversal of the entire meta list. I've turned the restart into a trampoline
-- and filtered it down to unsolved autos.
solveAutos : Int -> M Unit
solveAutos mstart = do
top <- get
mc <- readIORef top.metaCtx
let mlen = length' mc.metas - mstart
res <- run $ filter isAuto (ite (mstart == 0) mc.metas $ take (cast mlen) mc.metas)
if res then solveAutos mstart else pure MkUnit
where
isAuto : MetaEntry -> Bool
isAuto (Unsolved fc k ctx x AutoSolve xs) = True
isAuto _ = False
run : List MetaEntry -> M Bool
run Nil = pure False
run (e :: es) = do
res <- trySolveAuto e
if res then pure True else run es
-- We need to switch to SortedMap here
updateMeta : Int -> (MetaEntry -> M MetaEntry) -> M Unit
updateMeta ix f = do
top <- get
mc <- readIORef top.metaCtx
metas <- go mc.metas
writeIORef top.metaCtx $ MC metas mc.next
where
go : List MetaEntry -> M (List MetaEntry)
go Nil = error' "Meta \{show ix} not found"
go (x@((Unsolved y k z w v ys)) :: xs) = if k == ix then (flip _::_ xs) <$> f x else (_::_ x) <$> go xs
go (x@((Solved _ k y)) :: xs) = if k == ix then (flip _::_ xs) <$> f x else (_::_ x) <$> go xs
checkAutos : Int -> List MetaEntry -> M Unit
checkAutos ix Nil = pure MkUnit
checkAutos ix (entry@(Unsolved fc k ctx ty AutoSolve _) :: rest) = do
ty' <- quote ctx.lvl ty
when (usesMeta ty') $ \ _ => ignore $ trySolveAuto entry
checkAutos ix rest
where
usesMeta : Tm -> Bool
usesMeta (App _ (Meta _ k) u) = if k == ix then True else usesMeta u
usesMeta (App _ _ u) = usesMeta u
usesMeta _ = False
checkAutos ix (_ :: rest) = checkAutos ix rest
addConstraint : Env -> Int -> SnocList Val -> Val -> M Unit
addConstraint env ix sp tm = do
updateMeta ix $ \case
(Unsolved pos k a b c cons) => do
debug $ \ _ => "Add constraint m\{show ix} \{show sp} =?= \{show tm}"
pure (Unsolved pos k a b c (MkMc (getFC tm) env sp tm :: cons))
(Solved _ k tm) => error' "Meta \{show k} already solved (addConstraint :: Nil)"
top <- get
mc <- readIORef top.metaCtx
checkAutos ix mc.metas
-- this loops too
-- solveAutos 0 mc.metas
pure MkUnit
-- return renaming, the position is the new VVar
invert : Int -> SnocList Val -> M (List Int)
invert lvl sp = go sp Nil
where
go : SnocList Val -> List Int -> M (List Int)
go Lin acc = pure $ reverse acc
go (xs :< VVar fc k Lin) acc = do
if elem k acc
then do
debug $ \ _ => "\{show k} \{show acc}"
-- when does this happen?
error fc "non-linear pattern: \{show sp}"
else go xs (k :: acc)
go (xs :< v) _ = error emptyFC "non-variable in pattern \{show v}"
-- REVIEW why am I converting to Tm?
-- we have to "lift" the renaming when we go under a lambda
-- I think that essentially means our domain ix are one bigger, since we're looking at lvl
-- in the codomain, so maybe we can just keep that value
rename : Int -> List Int -> Int -> Val -> M Tm
renameSpine : Int -> List Int -> Int -> Tm -> SnocList Val -> M Tm
renameSpine meta ren lvl tm Lin = pure tm
renameSpine meta ren lvl tm (xs :< x) = do
xtm <- rename meta ren lvl x
xs' <- renameSpine meta ren lvl tm xs
pure $ App emptyFC xs' xtm
rename meta ren lvl (VVar fc k sp) = case findIndex' (_==_ k) ren of
Nothing => error fc "scope/skolem thinger VVar \{show k} ren \{show ren}"
Just x => renameSpine meta ren lvl (Bnd fc x) sp
rename meta ren lvl (VRef fc nm def sp) = renameSpine meta ren lvl (Ref fc nm def) sp
rename meta ren lvl (VMeta fc ix sp) = do
-- So sometimes we have an unsolved meta in here which reference vars out of scope.
debug $ \ _ => "rename Meta \{show ix} spine \{show sp}"
if ix == meta
-- REVIEW is this the right fc?
then error fc "meta occurs check"
else do
meta' <- lookupMeta ix
case meta' of
Solved fc _ val => do
debug $ \ _ => "rename: \{show ix} is solved"
val' <- vappSpine val sp
rename meta ren lvl val'
_ => do
debug $ \ _ => "rename: \{show ix} is unsolved"
catchError (renameSpine meta ren lvl (Meta fc ix) sp) (\err => throwError $ Postpone fc ix (errorMsg err))
rename meta ren lvl (VLam fc n icit rig t) = do
tapp <- t $$ VVar fc lvl Lin
scope <- rename meta (lvl :: ren) (1 + lvl) tapp
pure (Lam fc n icit rig scope)
rename meta ren lvl (VPi fc n icit rig ty tm) = do
ty' <- rename meta ren lvl ty
tmapp <- tm $$ VVar emptyFC lvl Lin
scope' <- rename meta (lvl :: ren) (1 + lvl) tmapp
pure (Pi fc n icit rig ty' scope')
rename meta ren lvl (VU fc) = pure (UU fc)
rename meta ren lvl (VErased fc) = pure (Erased fc)
-- for now, we don't do solutions with case in them.
rename meta ren lvl (VCase fc sc alts) = error fc "Case in solution"
rename meta ren lvl (VLit fc lit) = pure (Lit fc lit)
rename meta ren lvl (VLet fc name val body) = do
val' <- rename meta ren lvl val
body' <- rename meta (lvl :: ren) (1 + lvl) body
pure $ Let fc name val' body'
-- these probably shouldn't show up in solutions...
rename meta ren lvl (VLetRec fc name ty val body) = do
ty' <- rename meta ren lvl ty
val' <- rename meta (lvl :: ren) (1 + lvl) val
body' <- rename meta (lvl :: ren) (1 + lvl) body
pure $ LetRec fc name ty' val' body'
lams : Nat -> List String -> Tm -> Tm
lams Z _ tm = tm
-- REVIEW do we want a better FC, icity?, rig?
lams (S k) Nil tm = Lam emptyFC "arg_\{show k}" Explicit Many (lams k Nil tm)
lams (S k) (x :: xs) tm = Lam emptyFC x Explicit Many (lams k xs tm)
unify : Env -> UnifyMode -> Val -> Val -> M UnifyResult
.boundNames : Context -> List String
ctx.boundNames = map snd $ filter (\x => fst x == Bound) $ zip ctx.bds (map fst ctx.types)
solve env m sp t = do
meta@(Unsolved metaFC ix ctx_ ty kind cons) <- lookupMeta m
| _ => error (getFC t) "Meta \{show m} already solved! (solve :: Nil)"
debug $ \ _ => "SOLVE \{show m} \{show kind} lvl \{show $ length' env} sp \{show sp} is \{show t}"
let size = length $ filter (\x => x == Bound) ctx_.bds
debug $ \ _ => "\{show m} size is \{show size} sps \{show $ snoclen sp}"
let (True) = snoclen sp == size
| _ => do
let l = length' env
debug $ \ _ => "meta \{show m} (\{show ix}) applied to \{show $ snoclen sp} args instead of \{show size}"
debug $ \ _ => "CONSTRAINT m\{show ix} \{show sp} =?= \{show t}"
addConstraint env m sp t
let l = length' env
debug $ \ _ => "meta \{show meta}"
ren <- invert l sp
-- force unlet
hack <- quote l t
t <- eval env CBN hack
catchError (do
tm <- rename m ren l t
let tm = lams (snoclen sp) (reverse ctx_.boundNames) tm
top <- get
soln <- eval Nil CBN tm
updateMeta m $ \case
(Unsolved pos k _ _ _ cons) => pure $ Solved pos k soln
(Solved _ k x) => error' "Meta \{show ix} already solved! (solve2 :: Nil)"
for cons $ \case
MkMc fc env sp rhs => do
val <- vappSpine soln sp
debug $ \ _ => "discharge l=\{show $ length' env} \{(show val)} =?= \{(show rhs)}"
unify env UNormal val rhs
mc <- readIORef top.metaCtx
-- stack ...
-- checkAutos ix mc.metas
pure MkUnit
)
(\case
Postpone fc ix msg => do
-- let someone else solve this and then check again.
debug $ \ _ => "CONSTRAINT2 m\{show ix} \{show sp} =?= \{show t}"
addConstraint env m sp t
-- I get legit errors after stuffing in solution
-- report for now, tests aren't hitting this branch
err => throwError err
-- debug $ \ _ => "CONSTRAINT3 m\{show ix} \{show sp} =?= \{show t}"
-- debug $ \ _ => "because \{showError "" err}"
-- addConstraint env m sp t
)
unifySpine : Env -> UnifyMode -> Bool -> SnocList Val -> SnocList Val -> M UnifyResult
unifySpine env mode False _ _ = error emptyFC "unify failed at head" -- unreachable now
unifySpine env mode True Lin Lin = pure (MkResult Nil)
unifySpine env mode True (xs :< x) (ys :< y) =
-- I had idiom brackets here, technically fairly easy to desugar, but not adding at this time
_<+>_ <$> unify env mode x y <*> unifySpine env mode True xs ys
unifySpine env mode True _ _ = error emptyFC "meta spine length mismatch"
unify env mode t u = do
debug $ \ _ => "Unify lvl \{show $ length env}"
debug $ \ _ => " \{show t}"
debug $ \ _ => " =?= \{show u}"
t' <- forceMeta t >>= unlet env
u' <- forceMeta u >>= unlet env
debug $ \ _ => "forced \{show t'}"
debug $ \ _ => " =?= \{show u'}"
debug $ \ _ => "env \{show env}"
-- debug $ \ _ => "types \{show $ ctx.types}"
let l = length' env
-- On the LHS, variable matching is yields constraints/substitutions
-- We want this to happen before VRefs are expanded, and mixing mode
-- into the case tree explodes it further.
case mode of
UPattern => unifyPattern t' u'
UNormal => unifyMeta t' u'
-- The case tree is still big here. It's hard for idris to sort
-- What we really want is what I wrote - handle meta, handle lam, handle var, etc
where
-- The case tree here was huge, so I split it into stages
-- newt will have similar issues because it doesn't emit a default case
unifyRest : Val -> Val -> M UnifyResult
unifyRest (VPi fc _ _ _ a b) (VPi fc' _ _ _ a' b') = do
let fresh = VVar fc (length' env) Lin
xb <- b $$ fresh
xb' <- b' $$ fresh
_<+>_ <$> unify env mode a a' <*> unify (fresh :: env) mode xb xb'
unifyRest (VU _) (VU _) = pure neutral
-- REVIEW I'd like to quote this back, but we have l that aren't in the environment.
unifyRest t' u' = error (getFC t') "unify failed \{show t'} =?= \{show u'} \n env is \{show env}"
unifyRef : Val -> Val -> M UnifyResult
unifyRef t'@(VRef fc k def sp) u'@(VRef fc' k' def' sp') =
-- unifySpine is a problem for cmp (S x) (S y) =?= cmp x y
do
-- catchError(unifySpine env mode (k == k') sp sp') $ \ err => do
Nothing <- tryEval env t'
| Just v => do
debug $ \ _ => "tryEval \{show t'} to \{show v}"
unify env mode v u'
Nothing <- tryEval env u'
| Just v => unify env mode t' v
if k == k'
then unifySpine env mode (k == k') sp sp'
else error fc "vref mismatch \{show t'} \{show u'}"
-- Lennart.newt cursed type references itself
-- We _could_ look up the ref, eval against Nil and vappSpine...
unifyRef t u@(VRef fc' k' def sp') = do
debug $ \ _ => "expand \{show t} =?= %ref \{show k'}"
top <- get
case lookup k' top of
Just (MkEntry _ name ty (Fn tm)) => do
vtm <- eval Nil CBN tm
appvtm <- vappSpine vtm sp'
unify env mode t appvtm
_ => error fc' "unify failed \{show t} =?= \{show u} (no Fn :: Nil)\n env is \{show env}"
unifyRef t@(VRef fc k def sp) u = do
debug $ \ _ => "expand %ref \{show k} \{show sp} =?= \{show u}"
top <- get
case lookup k top of
Just (MkEntry _ name ty (Fn tm)) => do
vtm <- eval Nil CBN tm
tmsp <- vappSpine vtm sp
unify env mode tmsp u
_ => error fc "unify failed \{show t} (no Fn :: Nil) =?= \{show u}\n env is \{show env}"
unifyRef t u = unifyRest t u
unifyVar : Val -> Val -> M UnifyResult
unifyVar t'@(VVar fc k sp) u'@(VVar fc' k' sp') =
if k == k' then unifySpine env mode (k == k') sp sp'
else error fc "Failed to unify \{show t'} and \{show u'}"
unifyVar t'@(VVar fc k Lin) u = do
vu <- tryEval env u
case vu of
Just v => unify env mode t' v
Nothing => error fc "Failed to unify \{show t'} and \{show u}"
unifyVar t u'@(VVar fc k Lin) = do
vt <- tryEval env t
case vt of
Just v => unify env mode v u'
Nothing => error fc "Failed to unify \{show t} and \{show u'}"
unifyVar t u = unifyRef t u
unifyLam : Val -> Val -> M UnifyResult
unifyLam (VLam fc _ _ _ t) (VLam _ _ _ _ t') = do
let fresh = VVar fc (length' env) Lin
vappt <- t $$ fresh
vappt' <- t' $$ fresh
unify (fresh :: env) mode vappt vappt'
unifyLam t (VLam fc' _ _ _ t') = do
debug $ \ _ => "ETA \{show t}"
let fresh = VVar fc' (length' env) Lin
vappt <- vapp t fresh
vappt' <- t' $$ fresh
unify (fresh :: env) mode vappt vappt'
unifyLam (VLam fc _ _ _ t) t' = do
debug $ \ _ => "ETA' \{show t'}"
let fresh = VVar fc (length' env) Lin
appt <- t $$ fresh
vappt' <- vapp t' fresh
unify (fresh :: env) mode appt vappt'
unifyLam t u = unifyVar t u
unifyMeta : Val -> Val -> M UnifyResult
-- flex/flex
unifyMeta (VMeta fc k sp) (VMeta fc' k' sp') =
if k == k' then unifySpine env mode (k == k') sp sp'
-- TODO, might want to try the other way, too.
else if snoclen sp < snoclen sp'
then solve env k' sp' (VMeta fc k sp) >> pure neutral
else solve env k sp (VMeta fc' k' sp') >> pure neutral
unifyMeta t (VMeta fc' i' sp') = solve env i' sp' t >> pure neutral
unifyMeta (VMeta fc i sp) t' = solve env i sp t' >> pure neutral
unifyMeta t v = unifyLam t v
unifyPattern : Val -> Val -> M UnifyResult
unifyPattern t'@(VVar fc k sp) u'@(VVar fc' k' sp') =
if k == k' then unifySpine env mode (k == k') sp sp'
else case (sp, sp') of
(Lin,Lin) => if k < k'
then pure $ MkResult ((k, u') :: Nil)
else pure $ MkResult ((k', t') :: Nil)
_ => error fc "Failed to unify \{show t'} and \{show u'}"
unifyPattern (VVar fc k Lin) u = pure $ MkResult((k, u) :: Nil)
unifyPattern t (VVar fc k Lin) = pure $ MkResult ((k, t) :: Nil)
unifyPattern t u = unifyMeta t u
unifyCatch fc ctx ty' ty = do
res <- catchError (unify ctx.env UNormal ty' ty) $ \err => do
let names = map fst ctx.types
debug $ \ _ => "fail \{show ty'} \{show ty}"
a <- quote ctx.lvl ty'
b <- quote ctx.lvl ty
let msg = "unification failure: \{errorMsg err}\n failed to unify \{rpprint names a}\n with \{rpprint names b}\n "
throwError (E fc msg)
case res of
MkResult Nil => pure MkUnit
cs => do
-- probably want a unification mode that throws instead of returning constraints
-- TODO need a normalizeHoles, maybe on quote?
debug $ \ _ => "fail with constraints \{show cs.constraints}"
a <- quote ctx.lvl ty'
b <- quote ctx.lvl ty
let names = map fst ctx.types
let msg = "unification failure\n failed to unify \{rpprint names a}\n with \{rpprint names b}"
let msg = msg ++ "\nconstraints \{show cs.constraints}"
throwError (E fc msg)
-- error fc "Unification yields constraints \{show cs.constraints}"
freshMeta : Context -> FC -> Val -> MetaKind -> M Tm
freshMeta ctx fc ty kind = do
top <- get
mc <- readIORef top.metaCtx
debug $ \ _ => "fresh meta \{show mc.next} : \{show ty} (\{show kind})"
let newmeta = Unsolved fc mc.next ctx ty kind Nil
writeIORef top.metaCtx $ MC (newmeta :: mc.metas) (1 + mc.next)
-- infinite loop - keeps trying Ord a => Ord (a \x a)
-- when (kind == AutoSolve) $ \ _ => ignore $ trySolveAuto newmeta
pure $ applyBDs 0 (Meta fc mc.next) ctx.bds
where
-- hope I got the right order here :)
applyBDs : Int -> Tm -> List BD -> Tm
applyBDs k t Nil = t
-- review the order here
applyBDs k t (Bound :: xs) = App emptyFC (applyBDs (1 + k) t xs) (Bnd emptyFC k)
applyBDs k t (Defined :: xs) = applyBDs (1 + k) t xs
insert : (ctx : Context) -> Tm -> Val -> M (Tm × Val)
insert ctx tm ty = do
ty' <- forceMeta ty
case ty' of
VPi fc x Auto rig a b => do
m <- freshMeta ctx (getFC tm) a AutoSolve
debug $ \ _ => "INSERT Auto \{rpprint (names ctx) m} : \{show a}"
debug $ \ _ => "TM \{rpprint (names ctx) tm}"
mv <- eval ctx.env CBN m
bapp <- b $$ mv
insert ctx (App (getFC tm) tm m) bapp
VPi fc x Implicit rig a b => do
m <- freshMeta ctx (getFC tm) a Normal
debug $ \ _ => "INSERT \{rpprint (names ctx) m} : \{show a}"
debug $ \ _ => "TM \{rpprint (names ctx) tm}"
mv <- eval ctx.env CBN m
bapp <- b $$ mv
insert ctx (App (getFC tm) tm m) bapp
va => pure (tm, va)
primType : FC -> QName -> M Val
primType fc nm = do
top <- get
case lookup nm top of
Just (MkEntry _ name ty PrimTCon) => pure $ VRef fc name PrimTCon Lin
_ => error fc "Primitive type \{show nm} not in scope"
infer : Context -> Raw -> M (Tm × Val)
data Bind = MkBind String Icit Val
instance Show Bind where
show (MkBind str icit x) = "\{str} \{show icit}"
---------------- Case builder
record Problem where
constructor MkProb
clauses : List Clause
-- I think a pi-type representing the pattern args -> goal, so we're checking
-- We might pull out the pattern abstraction to a separate step and drop pats from clauses.
ty : Val
-- Might have to move this if Check reaches back in...
-- this is kinda sketchy, we can't use it twice at the same depth with the same name.
fresh : {{ctx : Context}} -> String -> String
fresh {{ctx}} base = base ++ "$" ++ show (length' ctx.env)
-- The result is a casetree, but it's in Tm
buildTree : Context -> Problem -> M Tm
-- Updates a clause for INTRO
introClause : String -> Icit -> Clause -> M Clause
introClause nm icit (MkClause fc cons (pat :: pats) expr) =
if icit == getIcit pat then pure $ MkClause fc ((nm, pat) :: cons) pats expr
else if icit == Implicit then pure $ MkClause fc ((nm, PatWild fc Implicit) :: cons) (pat :: pats) expr
else if icit == Auto then pure $ MkClause fc ((nm, PatWild fc Auto) :: cons) (pat :: pats) expr
else error fc "Explicit arg and \{show $ getIcit pat} pattern \{show nm} \{show pat}"
-- handle implicts at end?
introClause nm Implicit (MkClause fc cons Nil expr) = pure $ MkClause fc ((nm, PatWild fc Implicit) :: cons) Nil expr
introClause nm Auto (MkClause fc cons Nil expr) = pure $ MkClause fc ((nm, PatWild fc Auto) :: cons) Nil expr
introClause nm icit (MkClause fc cons Nil expr) = error fc "Clause size doesn't match"
-- A split candidate looks like x /? Con ...
-- we need a type here. I pulled if off of the
-- pi-type, but do we need metas solved or dependents split?
-- this may dot into a dependent.
findSplit : List Constraint -> Maybe Constraint
findSplit Nil = Nothing
-- FIXME look up type, ensure it's a constructor
findSplit (x@(nm, PatCon _ _ _ _ _) :: xs) = Just x
findSplit (x@(nm, PatLit _ val) :: xs) = Just x
findSplit (x :: xs) = findSplit xs
-- ***************
-- right, I think we rewrite the names in the context before running raw and we're good to go?
-- We have stuff like S k /? x, but I think we can back up to whatever the scrutinee variable was?
-- we could pass into build case and use it for (x /? y)
-- TODO, we may need to filter these against the type to rule out
-- impossible cases
getConstructors : Context -> FC -> Val -> M (List (QName × Int × Tm))
getConstructors ctx scfc (VRef fc nm _ _) = do
names <- lookupTCon nm
traverse lookupDCon names
where
lookupTCon : QName -> M (List QName)
lookupTCon str = do
top <- get
case lookup nm top of
(Just (MkEntry _ name type (TCon names))) => pure names
_ => error scfc "Not a type constructor \{show nm}"
lookupDCon : QName -> M (QName × Int × Tm)
lookupDCon nm = do
top <- get
case lookup nm top of
(Just (MkEntry _ name type (DCon k str))) => pure (name, k, type)
Just _ => error fc "Internal Error: \{show nm} is not a DCon"
Nothing => error fc "Internal Error: DCon \{show nm} not found"
getConstructors ctx scfc tm = do
tms <- vprint ctx tm
error scfc "Can't split - not VRef: \{tms}"
-- Extend environment with fresh variables from a pi-type
-- the pi-type here is the telescope of a constructor
-- return context, remaining type, and list of names
extendPi : Context -> Val -> SnocList Bind -> SnocList Val -> M (Context × Val × List Bind × SnocList Val)
extendPi ctx (VPi x str icit rig a b) nms sc = do
let nm = fresh str -- "pat"
let ctx' = extend ctx nm a
let v = VVar emptyFC (length' ctx.env) Lin
tyb <- b $$ v
extendPi ctx' tyb (nms :< MkBind nm icit a) (sc :< VVar x (length' ctx.env) Lin)
extendPi ctx ty nms sc = pure (ctx, ty, nms <>> Nil, sc)
-- turn vars into lets for forced values.
-- substitute inside values
-- FIXME we're not going under closures at the moment.
substVal : Int -> Val -> Val -> Val
substVal k v tm = go tm
where
go : Val -> Val
go (VVar fc j sp) = if j == k then v else (VVar fc j (map go sp))
go (VLet fc nm a b) = VLet fc nm (go a) b
go (VPi fc nm icit rig a b) = VPi fc nm icit rig (go a) b
go (VMeta fc ix sp) = VMeta fc ix (map go sp)
go (VRef fc nm y sp) = VRef fc nm y (map go sp)
go tm = tm
-- FIXME - do I need a Val closure like idris?
-- or env in unify...
-- or quote back
-- go (VLam fc nm sc) = VLam fc nm sc
-- go (VCase x sc xs) = ?rhs_2
-- go (VU x) = ?rhs_7
-- go (VLit x y) = ?rhs_8
-- need to turn k into a ground value
-- TODO rework this to do something better. We've got constraints, and
-- and may need to do proper unification if it's already defined to a value
-- below we're handling the case if it's defined to another var, but not
-- checking for loops.
updateContext : Context -> List (Int × Val) -> M Context
updateContext ctx Nil = pure ctx
updateContext ctx ((k, val) :: cs) =
let ix = cast $ lvl2ix (length' ctx.env) k in
case getAt ix ctx.env of
(Just (VVar _ k' Lin)) =>
if k' /= k
then updateContext ctx ((k',val) :: cs)
else
let ctx' = MkCtx ctx.lvl (map (substVal k val) ctx.env) ctx.types (replaceV ix Defined ctx.bds) ctx.ctxFC
in updateContext ctx' cs
(Just val') => do
-- This is fine for Z =?= Z but for other stuff, we probably have to match
info (getFC val) "need to unify \{show val} and \{show val'} or something"
updateContext ctx cs
Nothing => error (getFC val) "INTERNAL ERROR: bad index in updateContext"
--
-- updateContext ({env $= replace ix val, bds $= replaceV ix Defined } ctx) cs
where
replace : Nat -> Val -> List Val -> List Val
replace k x Nil = Nil
replace Z x (y :: xs) = x :: xs
replace (S k) x (y :: xs) = y :: replace k x xs
replaceV : a. Nat -> a -> List a -> List a
replaceV k x Nil = Nil
replaceV Z x (y :: xs) = x :: xs
replaceV (S k) x (y :: xs) = y :: replaceV k x xs
-- ok, so this is a single constructor, CaseAlt
-- return Nothing if dcon doesn't unify with scrut
buildCase : Context -> Problem -> String -> Val -> (QName × Int × Tm) -> M (Maybe CaseAlt)
buildCase ctx prob scnm scty (dcName, arity, ty) = do
debug $ \ _ => "CASE \{scnm} match \{show dcName} ty \{rpprint (names ctx) ty}"
vty <- eval Nil CBN ty
(ctx', ty', vars, sc) <- extendPi ctx (vty) Lin Lin
-- TODO I think we need to figure out what is dotted, maybe
-- the environment manipulation below is sufficient bookkeeping
-- or maybe it's a bad approach.
-- At some point, I'll take a break and review more papers and code,
-- now that I know some of the questions I'm trying to answer.
-- We get unification constraints from matching the data constructors
-- codomain with the scrutinee type
debug $ \ _ => "unify dcon cod with scrut\n \{show ty'}\n \{show scty}"
Just res <- catchError(Just <$> unify ctx'.env UPattern ty' scty)
(\err => do
debug $ \ _ => "SKIP \{show dcName} because unify error \{errorMsg err}"
pure Nothing)
| _ => pure Nothing
-- if the value is already constrained to a different constructor, return Nothing
debug $ \ _ => "scrut \{scnm} constrained to \{show $ lookupDef ctx scnm}"
let (VRef _ sctynm _ _) = scty | _ => error (getFC scty) "case split on non-inductive \{show scty}"
case lookupDef ctx scnm of
Just val@(VRef fc nm y sp) =>
if nm /= dcName
then do
debug $ \ _ => "SKIP \{show dcName} because \{scnm} forced to \{show val}"
pure Nothing
else do
debug $ \ _ => "case \{show dcName} dotted \{show val}"
when (length vars /= snoclen sp) $ \ _ => error emptyFC "\{show $ length vars} vars /= \{show $ snoclen sp}"
-- TODO - I think we need to define the context vars to sp via updateContext
let lvl = length' ctx'.env - length' vars
let scons = constrainSpine lvl (sp <>> Nil) -- REVIEW is this the right order?
ctx' <- updateContext ctx' scons
debug $ \ _ => "(dcon \{show dcName} ty \{show ty'} scty \{show scty}"
debug $ \ _ => "(dcon \{show dcName}) (vars \{show vars}) clauses were"
for prob.clauses $ (\x => debug $ \ _ => " \{show x}")
clauses <- mapMaybe id <$> traverse (rewriteClause sctynm vars) prob.clauses
debug $ \ _ => "and now:"
for clauses $ (\x => debug $ \ _ => " \{show x}")
when (length' clauses == 0) $ \ _ => error ctx.ctxFC "Missing case for \{show dcName} splitting \{scnm}"
tm <- buildTree ctx' (MkProb clauses prob.ty)
pure $ Just $ CaseCons dcName (map getName vars) tm
_ => do
(Right res) <- tryError (unify ctx'.env UPattern ty' scty)
| Left err => do
debug $ \ _ => "SKIP \{show dcName} because unify error \{errorMsg err}"
pure Nothing
-- Constrain the scrutinee's variable to be dcon applied to args
let (Just x) = findIndex' ((_==_ scnm) fst) ctx'.types
| Nothing => error ctx.ctxFC "\{scnm} not is scope?"
let lvl = lvl2ix (length' ctx'.env) x
let scon = (lvl, VRef ctx.ctxFC dcName (DCon arity dcName) sc)
debug $ \ _ => "scty \{show scty}"
debug $ \ _ => "UNIFY results \{show res.constraints}"
debug $ \ _ => "before types: \{show ctx'.types}"
debug $ \ _ => "before env: \{show ctx'.env}"
debug $ \ _ => "SC CONSTRAINT: \{show scon}"
-- push the constraints into the environment by turning bind into define
-- Is this kosher? It might be a problem if we've already got metas over
-- this stuff, because it intends to ignore defines.
ctx' <- updateContext ctx' (scon :: res.constraints)
debug $ \ _ => "context types: \{show ctx'.types}"
debug $ \ _ => "context env: \{show ctx'.env}"
-- What if all of the pattern vars are defined to meta
debug $ \ _ => "(dcon \{show dcName} ty \{show ty'} scty \{show scty}"
debug $ \ _ => "(dcon \{show dcName}) (vars \{show vars}) clauses were"
for prob.clauses $ (\x => debug $ \ _ => " \{show x}")
clauses <- mapMaybe id <$> traverse (rewriteClause sctynm vars) prob.clauses
debug $ \ _ => "and now:"
for clauses $ (\x => debug $ \ _ => " \{show x}")
when (length' clauses == 0) $ \ _ => error ctx.ctxFC "Missing case for \{show dcName} splitting \{scnm}"
tm <- buildTree ctx' (MkProb clauses prob.ty)
pure $ Just $ CaseCons dcName (map getName vars) tm
where
constrainSpine : Int -> List Val -> List (Int × Val)
constrainSpine lvl Nil = Nil
constrainSpine lvl (v :: vs) = (lvl, v) :: constrainSpine (1 + lvl) vs
getName : Bind -> String
getName (MkBind nm _ _) = nm
-- for each clause in prob, find nm on LHS of some constraint, and
-- "replace" with the constructor and vars.
--
-- This will be:
-- x /? y can probably just leave this
-- x /? D a b c split into three x /? a, y /? b, z /? c
-- x /? E a b drop this clause
-- We get a list of clauses back (a Problem) and then solve that
-- If they all fail, we have a coverage issue. (Assuming the constructor is valid)
makeConstr : List Bind -> List Pattern -> M (List (String × Pattern))
makeConstr Nil Nil = pure $ Nil
-- would need M in here to throw, and I'm building stuff as I go, I suppose I could <$>
makeConstr Nil (pat :: pats) = error ctx.ctxFC "too many patterns"
makeConstr ((MkBind nm Implicit x) :: xs) Nil = do
rest <- makeConstr xs Nil
pure $ (nm, PatWild emptyFC Implicit) :: rest
makeConstr ((MkBind nm Auto x) :: xs) Nil = do
rest <- makeConstr xs Nil
pure $ (nm, PatWild emptyFC Auto) :: rest
-- FIXME need a proper error, but requires wiring M three levels down
makeConstr ((MkBind nm Explicit x) :: xs) Nil = error ctx.ctxFC "not enough patterns"
makeConstr ((MkBind nm Explicit x) :: xs) (pat :: pats) =
if getIcit pat == Explicit
then do
rest <- makeConstr xs pats
pure $ (nm, pat) :: rest
else error ctx.ctxFC "mismatch between Explicit and \{show $ getIcit pat}"
makeConstr ((MkBind nm icit x) :: xs) (pat :: pats) =
if getIcit pat /= icit -- Implicit/Explicit Implicit/Auto, etc
then do
rest <- makeConstr xs (pat :: pats)
pure $ (nm, PatWild (getFC pat) icit) :: rest
else do
rest <- makeConstr xs pats
pure $ (nm, pat) :: rest
-- replace constraint with constraints on parameters, or nothing if non-matching clause
rewriteConstraint : QName -> List Bind -> List Constraint -> List Constraint -> M (Maybe (List Constraint))
rewriteConstraint sctynm vars Nil acc = pure $ Just acc
rewriteConstraint sctynm vars (c@(nm, y) :: xs) acc =
if nm == scnm
then case y of
PatVar _ _ s => pure $ Just $ c :: (xs ++ acc)
PatWild _ _ => pure $ Just $ c :: (xs ++ acc)
-- FIXME why don't we hit this (when user puts 'x' for Just 'x')
PatLit fc lit => error fc "Literal \{show lit} in constructor split"
PatCon fc icit nm ys as => if nm == dcName
then case as of
Nothing => do
rest <- makeConstr vars ys
pure $ Just $ rest ++ xs ++ acc
-- putting this in constraints causes it to be renamed scnm -> nm' when we check body.
Just nm' => do
rest <- makeConstr vars ys
pure $ Just $ (scnm, (PatVar fc icit nm')) :: rest ++ xs ++ acc
else do
-- TODO can we check this when we make the PatCon?
top <- get
case lookup nm top of
(Just (MkEntry _ name type (DCon k tcname))) =>
if (tcname /= sctynm)
then error fc "Constructor is \{show tcname} expected \{show sctynm}"
else pure Nothing
Just _ => error fc "Internal Error: \{show nm} is not a DCon"
Nothing => error fc "Internal Error: DCon \{show nm} not found"
else rewriteConstraint sctynm vars xs (c :: acc)
rewriteClause : QName -> List Bind -> Clause -> M (Maybe Clause)
rewriteClause sctynm vars (MkClause fc cons pats expr) = do
Just cons <- rewriteConstraint sctynm vars cons Nil | _ => pure Nothing
pure $ Just $ MkClause fc cons pats expr
splitArgs : Raw -> List (Raw × Icit) -> (Raw × List (Raw × Icit))
splitArgs (RApp fc t u icit) args = splitArgs t ((u, icit) :: args)
splitArgs tm args = (tm, args)
mkPat : TopContext -> (Raw × Icit) -> M Pattern
mkPat top (RAs fc as tm, icit) = do
pat <- mkPat top (tm, icit)
case pat of
(PatCon fc icit nm args Nothing) => pure $ PatCon fc icit nm args (Just as)
(PatCon fc icit nm args _) => error fc "Double as pattern \{show tm}"
t => error fc "Can't put as on non-constructor \{show tm}"
mkPat top (tm, icit) = do
case splitArgs tm Nil of
((RVar fc nm), b) => case lookupRaw nm top of
(Just (MkEntry _ name type (DCon k str))) => do
-- TODO check arity, also figure out why we need reverse
bpat <- traverse (mkPat top) b
pure $ PatCon fc icit name bpat Nothing
-- This fires when a global is shadowed by a pattern var
-- Just _ => error (getFC tm) "\{show nm} is not a data constructor"
_ => case b of
Nil => pure $ PatVar fc icit nm
_ => error (getFC tm) "patvar applied to args"
((RImplicit fc), Nil) => pure $ PatWild fc icit
((RImplicit fc), _) => error fc "implicit pat can't be applied to arguments"
((RLit fc lit), Nil) => pure $ PatLit fc lit
((RLit fc y), b) => error fc "lit cannot be applied to arguments"
(a,b) => error (getFC a) "expected pat var or constructor, got \{show a}"
makeClause : TopContext -> (Raw × Raw) -> M Clause
makeClause top (lhs, rhs) = do
let (nm, args) = splitArgs lhs Nil
pats <- traverse (mkPat top) args
pure $ MkClause (getFC lhs) Nil pats rhs
-- we'll want both check and infer, we're augmenting a context
-- so probably a continuation:
-- Context -> List Decl -> (Context -> M a) -> M a
checkWhere : Context -> List Decl -> Raw -> Val -> M Tm
checkWhere ctx decls body ty = do
-- we're going to be very proscriptive here
let (TypeSig sigFC (name :: Nil) rawtype :: decls) = decls
| x :: _ => error (getFC x) "expected type signature"
| _ => check ctx body ty
funTy <- check ctx rawtype (VU sigFC)
debug $ \ _ => "where clause \{name} : \{rpprint (names ctx) funTy}"
let (Def defFC name' clauses :: decls') = decls
| x :: _ => error (getFC x) "expected function definition"
| _ => error sigFC "expected function definition after this signature"
unless (name == name') $ \ _ => error defFC "Expected def for \{name}"
-- REVIEW is this right, cribbed from my top level code
top <- get
clauses' <- traverse (makeClause top) clauses
vty <- eval ctx.env CBN funTy
debug $ \ _ => "\{name} vty is \{show vty}"
let ctx' = extend ctx name vty
-- if I lift, I need to namespace it, add args, and add args when
-- calling locally
-- context could hold a Name -> Val (not Tm because levels) to help with that
-- e.g. "go" -> (VApp ... (VApp (VRef "ns.go") ...)
-- But I'll attempt letrec first
tm <- buildTree (withPos ctx' defFC) (MkProb clauses' vty)
vtm <- eval ctx'.env CBN tm
-- Should we run the rest with the definition in place?
-- I'm wondering if switching from bind to define will mess with metas
-- let ctx' = define ctx name vtm vty
ty' <- checkWhere ctx' decls' body ty
pure $ LetRec sigFC name funTy tm ty'
checkDone : Context -> List (String × Pattern) -> Raw -> Val -> M Tm
checkDone ctx Nil body ty = do
debug $ \ _ => "DONE-> check body \{show body} at \{show ty}"
-- TODO better dump context function
debugM $ showCtx ctx
-- Hack to try to get Combinatory working
-- we're trying to subst in solutions here.
env' <- for ctx.env $ \ val => do
ty <- quote (length' ctx.env) val
-- This is not getting vars under lambdas
eval ctx.env CBV ty
types' <- for ctx.types $ \case
(nm,ty) => do
nty <- quote (length' env') ty
ty' <- eval env' CBV nty
pure (nm, ty')
let ctx = MkCtx ctx.lvl env' types' ctx.bds ctx.ctxFC
debug $ \ _ => "AFTER"
debugM $ showCtx ctx
-- I'm running an eval here to run case statements that are
-- unblocked by lets in the env. (Tree.newt:cmp)
-- The case eval code only works in the Tm -> Val case at the moment.
-- we don't have anything like `vapp` for case
ty <- quote (length' ctx.env) ty
ty <- eval ctx.env CBN ty
debug $ \ _ => "check at \{show ty}"
got <- check ctx body ty
debug $ \ _ => "DONE<- got \{rpprint (names ctx) got}"
pure got
checkDone ctx ((x, PatWild _ _) :: xs) body ty = checkDone ctx xs body ty
checkDone ctx ((nm, (PatVar _ _ nm')) :: xs) body ty =
let ctx = MkCtx ctx.lvl ctx.env (rename ctx.types) ctx.bds ctx.ctxFC in
checkDone ctx xs body ty
where
rename : List (String × Val) -> List (String × Val)
rename Nil = Nil
rename ((name, ty) :: xs) =
if name == nm
then (nm', ty) :: xs
else (name, ty) :: rename xs
checkDone ctx ((x, pat) :: xs) body ty = error (getFC pat) "stray constraint \{x} /? \{show pat}"
-- need to run constructors, then run default
-- wild/var can come before 'x' so we need a list first
getLits : String -> List Clause -> List Literal
getLits nm Nil = Nil
getLits nm ((MkClause fc cons pats expr) :: cs) = case find ((_==_ nm) fst) cons of
Just (_, (PatLit _ lit)) => lit :: getLits nm cs
_ => getLits nm cs
-- then build a lit case for each of those
buildLitCase : Context -> Problem -> FC -> String -> Val -> Literal -> M CaseAlt
buildLitCase ctx prob fc scnm scty lit = do
-- Constrain the scrutinee's variable to be lit value
let (Just ix) = findIndex' ((_==_ scnm) fst) ctx.types
| Nothing => error ctx.ctxFC "\{scnm} not is scope?"
let lvl = lvl2ix (length' ctx.env) ix
let scon = (lvl, VLit fc lit)
ctx' <- updateContext ctx (scon :: Nil)
let clauses = mapMaybe rewriteClause prob.clauses
when (length' clauses == 0) $ \ _ => error ctx.ctxFC "Missing case for \{show lit} splitting \{scnm}"
tm <- buildTree ctx' (MkProb clauses prob.ty)
pure $ CaseLit lit tm
where
-- FIXME - thread in M for errors
-- replace constraint with constraints on parameters, or nothing if non-matching clause
rewriteConstraint : List Constraint -> List Constraint -> Maybe (List Constraint)
rewriteConstraint Nil acc = Just acc
rewriteConstraint (c@(nm, y) :: xs) acc =
if nm == scnm
then case y of
PatVar _ _ s => Just $ c :: (xs ++ acc)
PatWild _ _ => Just $ c :: (xs ++ acc)
PatLit fc lit' => if lit' == lit then Just $ (xs ++ acc) else Nothing
PatCon _ _ str ys as => Nothing -- error matching lit against constructor
else rewriteConstraint xs (c :: acc)
rewriteClause : Clause -> Maybe Clause
rewriteClause (MkClause fc cons pats expr) = do
cons <- rewriteConstraint cons Nil
pure $ MkClause fc cons pats expr
buildLitCases : Context -> Problem -> FC -> String -> Val -> M (List CaseAlt)
buildLitCases ctx prob fc scnm scty = do
let lits = nub $ getLits scnm prob.clauses
alts <- traverse (buildLitCase ctx prob fc scnm scty) lits
-- TODO build default case
-- run getLits
-- buildLitCase for each
let defclauses = filter isDefault prob.clauses
when (length' defclauses == 0) $ \ _ => error fc "no default for literal slot on \{show scnm}"
tm <- buildTree ctx (MkProb defclauses prob.ty)
pure $ alts ++ ( CaseDefault tm :: Nil)
where
isDefault : Clause -> Bool
isDefault cl = case find ((_==_ scnm) fst) cl.cons of
Just (_, (PatVar _ _ _)) => True
Just (_, (PatWild _ _)) => True
Nothing => True
_ => False
-- TODO - figure out if these need to be in Prelude or have a special namespace
-- If we lookupRaw "String", we could get different answers in different contexts.
-- maybe Hardwire this one
stringType intType charType : QName
stringType = QN ("Prim" :: Nil) "String"
intType = QN ("Prim" :: Nil) "Int"
charType = QN ("Prim" :: Nil) "Char"
litTyName : Literal -> QName
litTyName (LString str) = stringType
litTyName (LInt i) = intType
litTyName (LChar c) = charType
renameContext : String -> String -> Context -> Context
renameContext from to ctx = MkCtx ctx.lvl ctx.env (go ctx.types) ctx.bds ctx.ctxFC
where
go : List (String × Val) -> List (String × Val)
go Nil = Nil
go ((a,b) :: types) = if a == from then (to,b) :: types else (a,b) :: go types
-- This process is similar to extendPi, but we need to stop
-- if one clause is short on patterns.
buildTree ctx (MkProb Nil ty) = error emptyFC "no clauses"
buildTree ctx prob@(MkProb ((MkClause fc cons (x :: xs) expr) :: cs) (VPi _ str icit rig a b)) = do
let l = length' ctx.env
let nm = fresh str -- "pat"
let ctx' = extend ctx nm a
-- type of the rest
clauses <- traverse (introClause nm icit) prob.clauses
-- REVIEW fc from a pat?
vb <- b $$ VVar fc l Lin
Lam fc nm icit rig <$> buildTree ctx' (MkProb clauses vb)
buildTree ctx prob@(MkProb ((MkClause fc cons pats@(x :: xs) expr) :: cs) ty) =
error fc "Extra pattern variables \{show pats}"
-- need to find some name we can split in (x :: xs)
-- so LHS of constraint is name (or VVar - if we do Val)
-- then run the split
-- some of this is copied into check
buildTree ctx prob@(MkProb ((MkClause fc constraints Nil expr) :: cs) ty) = do
debug $ \ _ => "buildTree \{show constraints} \{show expr}"
let (Just (scnm, pat)) = findSplit constraints
| _ => do
debug $ \ _ => "checkDone \{show constraints}"
checkDone ctx constraints expr ty
debug $ \ _ => "SPLIT on \{scnm} because \{show pat} \{show $ getFC pat}"
let (Just (sctm, scty)) = lookupName ctx scnm
| _ => error fc "Internal Error: can't find \{scnm} in environment"
-- REVIEW We probably need to know this is a VRef before we decide to split on this slot..
scty' <- unlet ctx.env scty >>= forceType ctx.env
-- TODO attempting to pick up Autos that could have been solved immediately
-- If we try on creation, we're looping at the moment, because of the possibility
-- of Ord a -> Ord b -> Ord (a \x b). Need to cut earlier when solving or switch to
-- Idris method...
scty' <- case scty' of
(VMeta fc1 ix sp) => do
meta <- lookupMeta ix
case meta of
(Solved _ k t) => forceType ctx.env scty'
(Unsolved _ k xs _ _ _) => do
top <- get
mc <- readIORef top.metaCtx
ignore $ solveAutos 0
forceType ctx.env scty'
_ => pure scty'
case pat of
PatCon fc _ _ _ as => do
-- expand vars that may be solved, eval top level functions
debug $ \ _ => "EXP \{show scty} -> \{show scty'}"
-- this is per the paper, but it would be nice to coalesce
-- default cases
cons <- getConstructors ctx (getFC pat) scty'
debug $ \ _ => "CONS \{show $ map fst cons}"
alts <- traverse (buildCase ctx prob scnm scty') cons
debug $ \ _ => "GOTALTS \{show alts}"
when (length' (mapMaybe id alts) == 0) $ \ _ => error (fc) "no alts for \{show scty'}"
pure $ Case fc sctm (mapMaybe id alts)
PatLit fc v => do
let tyname = litTyName v
case scty' of
(VRef fc1 nm x sp) => when (nm /= tyname) $ \ _ => error fc "expected \{show scty} and got \{show tyname}"
_ => error fc "expected \{show scty} and got \{show tyname}"
-- need to run through all of the PatLits in this slot and then find a fallback
-- walk the list of patterns, stop if we hit a PatVar / PatWild, fail if we don't
alts <- buildLitCases ctx prob fc scnm scty
pure $ Case fc sctm alts
pat => error (getFC pat) "Internal error - tried to split on \{show pat}"
showDef : Context -> List String -> Int -> Val -> M String
showDef ctx names n v@(VVar _ n' Lin) = if n == n'
then pure ""
else do
-- REVIEW - was using names, is it ok to pull from the context?
vv <- vprint ctx v
pure "= \{vv}"
showDef ctx names n v = do
vv <- vprint ctx v
pure "= \{vv}"
-- pure "= \{rpprint names !(quote ctx.lvl v)}"
-- desugar do
undo : FC -> List DoStmt -> M Raw
undo prev Nil = error prev "do block must end in expression"
undo prev ((DoExpr fc tm) :: Nil) = pure tm
-- TODO decide if we want to use >> or just >>=
undo prev ((DoExpr fc tm) :: xs) = do
xs' <- undo fc xs
pure $ RApp fc (RApp fc (RVar fc "_>>=_") tm Explicit) (RLam fc (BI fc "_" Explicit Many) xs') Explicit
undo prev ((DoLet fc nm tm) :: xs) = RLet fc nm (RImplicit fc) tm <$> undo fc xs
undo prev ((DoArrow fc left@(RVar fc' nm) right Nil) :: xs) = do
top <- get
case lookupRaw nm top of
Just _ => do
let nm = "$sc"
xs' <- undo fc xs
rest <- pure $ RCase fc (RVar fc nm) (MkAlt left xs' :: Nil)
pure $ RApp fc (RApp fc (RVar fc "_>>=_") right Explicit)
(RLam fc (BI fc nm Explicit Many) rest) Explicit
Nothing => do
xs' <- undo fc xs
pure $ RApp fc (RApp fc (RVar fc "_>>=_") right Explicit)
(RLam fc (BI fc' nm Explicit Many) xs') Explicit
undo prev ((DoArrow fc left right alts) :: xs) = do
let nm = "$sc"
xs' <- undo fc xs
rest <- pure $ RCase fc (RVar fc nm) (MkAlt left xs' :: alts)
pure $ RApp fc (RApp fc (RVar fc "_>>=_") right Explicit)
(RLam fc (BI fc nm Explicit Many) rest) Explicit
check ctx tm ty = do
ty' <- forceType ctx.env ty
case (tm, ty') of
(RWhere fc decls body, ty) => checkWhere ctx (collectDecl decls) body ty
(RIf fc a b c, ty) =>
let tm' = RCase fc a ( MkAlt (RVar (getFC b) "True") b :: MkAlt (RVar (getFC c) "False") c :: Nil) in
check ctx tm' ty
(RDo fc stmts, ty) => do
stmts' <- undo fc stmts
check ctx stmts' ty
(RCase fc rsc alts, ty) => do
(sc, scty) <- infer ctx rsc
scty <- forceMeta scty
debug $ \ _ => "SCTM \{rpprint (names ctx) sc}"
debug $ \ _ => "SCTY \{show scty}"
let scnm = fresh "sc"
top <- get
clauses <- for alts $ \case
(MkAlt pat rawRHS) => do
pat' <- mkPat top (pat, Explicit)
pure $ MkClause (getFC pat) ((scnm, pat') :: Nil) Nil rawRHS
-- buildCase expects scrutinee to be a name in the context, so we need to let it.
-- if it's a Bnd and not shadowed we could skip the let, but that's messy.
let ctx' = extend ctx scnm scty
tree <- buildTree ctx' $ MkProb clauses ty
pure $ Let fc scnm sc tree
-- rendered in ProcessDecl
(RHole fc, ty) => freshMeta ctx fc ty User
(t@(RLam fc (BI _ nm icit _) tm), ty@(VPi fc' nm' icit' rig a b)) => do
debug $ \ _ => "icits \{nm} \{show icit} \{nm'} \{show icit'}"
if icit == icit' then do
let var = VVar fc (length' ctx.env) Lin
let ctx' = extend ctx nm a
bapp <- b $$ var
tm' <- check ctx' tm bapp
pure $ Lam fc nm icit rig tm'
else if icit' /= Explicit then do
let var = VVar fc (length' ctx.env) Lin
ty' <- b $$ var
-- use nm' here if we want them automatically in scope
sc <- check (extend ctx nm' a) t ty'
pure $ Lam fc nm' icit rig sc
else
error fc "Icity issue checking \{show t} at \{show ty}"
(t@(RLam _ (BI fc nm icit quant) tm), ty) => do
pty <- prvalCtx ty
error fc "Expected pi type, got \{pty}"
(RLet fc nm ty v sc, rty) => do
ty' <- check ctx ty (VU emptyFC)
vty <- eval ctx.env CBN ty'
v' <- check ctx v vty
vv <- eval ctx.env CBN v'
let ctx' = define ctx nm vv vty
sc' <- check ctx' sc rty
pure $ Let fc nm v' sc'
(RImplicit fc, ty) => freshMeta ctx fc ty Normal
(tm, ty@(VPi fc nm' Implicit rig a b)) => do
let names = map fst ctx.types
debug $ \ _ => "XXX edge case add implicit lambda {\{nm'} : \{show a}} to \{show tm} "
let var = VVar fc (length' ctx.env) Lin
ty' <- b $$ var
debugM $ do
pty' <- prvalCtx {{(extend ctx nm' a)}} ty'
pure "XXX ty' is \{pty'}"
sc <- check (extend ctx nm' a) tm ty'
pure $ Lam (getFC tm) nm' Implicit rig sc
(tm, ty@(VPi fc nm' Auto rig a b)) => do
let names = map fst ctx.types
debug $ \ _ => "XXX edge case add auto lambda {\{nm'} : \{show a}} to \{show tm} "
let var = VVar fc (length' ctx.env) Lin
ty' <- b $$ var
debugM $ do
pty' <- prvalCtx {{(extend ctx nm' a)}} ty'
pure "XXX ty' is \{pty'}"
sc <- check (extend ctx nm' a) tm ty'
pure $ Lam (getFC tm) nm' Auto rig sc
(tm,ty) => do
(tm', ty') <- infer ctx tm
(tm', ty') <- insert ctx tm' ty'
let names = map fst ctx.types
debug $ \ _ => "INFER \{show tm} to (\{rpprint names tm'} : \{show ty'}) expect \{show ty}"
unifyCatch (getFC tm) ctx ty' ty
pure tm'
infer ctx (RVar fc nm) = go 0 ctx.types
where
go : Int -> List (String × Val) -> M (Tm × Val)
go i Nil = do
top <- get
case lookupRaw nm top of
Just (MkEntry _ name ty def) => do
debug $ \ _ => "lookup \{show name} as \{show def}"
vty <- eval Nil CBN ty
pure (Ref fc name def, vty)
Nothing => error fc "\{show nm} not in scope"
go i ((x, ty) :: xs) = if x == nm then pure $ (Bnd fc i, ty)
else go (i + 1) xs
-- FIXME tightens up output but hardcodes a name
-- infer ctx (RApp fc (RVar _ "_$_") u icit) = infer ctx u
infer ctx (RApp fc t u icit) = do
-- If the app is explicit, add any necessary metas
(icit, t, tty) <- case the Icit icit of
Explicit => do
(t, tty) <- infer ctx t
(t, tty) <- insert ctx t tty
pure (Explicit, t, tty)
Implicit => do
(t, tty) <- infer ctx t
pure (Implicit, t, tty)
Auto => do
(t, tty) <- infer ctx t
pure (Auto, t, tty)
(a,b) <- do
tty' <- forceMeta tty
case tty' of
(VPi fc' str icit' rig a b) => if icit' == icit then pure (a,b)
else error fc "IcitMismatch \{show icit} \{show icit'}"
-- If it's not a VPi, try to unify it with a VPi
-- TODO test case to cover this.
tty => do
debug $ \ _ => "unify PI for \{show tty}"
a <- freshMeta ctx fc (VU emptyFC) Normal >>= eval ctx.env CBN
b <- MkClosure ctx.env <$> freshMeta (extend ctx ":ins" a) fc (VU emptyFC) Normal
-- FIXME - I had to guess Many here. What are the side effects?
unifyCatch fc ctx tty (VPi fc ":ins" icit Many a b)
pure (a,b)
u <- check ctx u a
u' <- eval ctx.env CBN u
bappu <- b $$ u'
pure (App fc t u, bappu)
infer ctx (RU fc) = pure (UU fc, VU fc) -- YOLO
infer ctx (RPi _ (BI fc nm icit quant) ty ty2) = do
ty' <- check ctx ty (VU fc)
vty' <- eval ctx.env CBN ty'
ty2' <- check (extend ctx nm vty') ty2 (VU fc)
pure (Pi fc nm icit quant ty' ty2', (VU fc))
infer ctx (RLet fc nm ty v sc) = do
ty' <- check ctx ty (VU emptyFC)
vty <- eval ctx.env CBN ty'
v' <- check ctx v vty
vv <- eval ctx.env CBN v'
let ctx' = define ctx nm vv vty
(sc',scty) <- infer ctx' sc
pure $ (Let fc nm v' sc', scty)
infer ctx (RAnn fc tm rty) = do
ty <- check ctx rty (VU fc)
vty <- eval ctx.env CBN ty
tm <- check ctx tm vty
pure (tm, vty)
infer ctx (RLam _ (BI fc nm icit quant) tm) = do
a <- freshMeta ctx fc (VU emptyFC) Normal >>= eval ctx.env CBN
let ctx' = extend ctx nm a
(tm', b) <- infer ctx' tm
debug $ \ _ => "make lam for \{show nm} scope \{rpprint (names ctx) tm'} : \{show b}"
tyb <- quote (1 + ctx.lvl) b
pure $ (Lam fc nm icit quant tm', VPi fc nm icit quant a (MkClosure ctx.env tyb))
infer ctx (RImplicit fc) = do
ty <- freshMeta ctx fc (VU emptyFC) Normal
vty <- eval ctx.env CBN ty
tm <- freshMeta ctx fc vty Normal
pure (tm, vty)
infer ctx (RLit fc (LString str)) = do
ty <- primType fc stringType
pure (Lit fc (LString str), ty)
infer ctx (RLit fc (LInt i)) = do
ty <- primType fc intType
pure (Lit fc (LInt i), ty)
infer ctx (RLit fc (LChar c)) = do
ty <- primType fc charType
pure (Lit fc (LChar c), ty)
infer ctx (RAs fc _ _) = error fc "@ can only be used in patterns"
infer ctx tm = error (getFC tm) "Implement infer \{show tm}"