Files
newt/port/Prelude.newt

339 lines
7.2 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
module Prelude
data Bool : U where
True False : Bool
not : Bool Bool
not True = False
not False = True
-- In Idris, this is lazy in the second arg, we're not doing
-- magic laziness for now, it's messy
infixr 4 _||_
_||_ : Bool Bool Bool
True || _ = True
False || b = b
infixl 6 _==_
class Eq a where
_==_ : a a Bool
data Nat : U where
Z : Nat
S : Nat -> Nat
instance Eq Nat where
Z == Z = True
S n == S m = n == m
x == y = False
data Maybe : U -> U where
Just : {a : U} -> a -> Maybe a
Nothing : {a : U} -> Maybe a
fromMaybe : a. a Maybe a a
fromMaybe a Nothing = a
fromMaybe _ (Just a) = a
data Either : U -> U -> U where
Left : {0 a b : U} -> a -> Either a b
Right : {0 a b : U} -> b -> Either a b
infixr 7 _::_
data List : U -> U where
Nil : A. List A
_::_ : A. A List A List A
infixl 7 _:<_
data SnocList : U U where
Lin : A. SnocList A
_:<_ : A. SnocList A A SnocList A
-- 'chips'
infixr 6 _<>>_
_<>>_ : a. SnocList a List a List a
Lin <>> ys = ys
(xs :< x) <>> ys = xs <>> x :: ys
-- TODO this is special cased in some languages, maybe for easier
-- inference? Figure out why.
-- Currently very noisy in generated code (if nothing else, optimize it out?)
infixr 0 _$_
_$_ : a b. (a -> b) -> a -> b
f $ a = f a
infixr 8 _×_
infixr 2 _,_
data _×_ : U U U where
_,_ : A B. A B A × B
infixl 6 _<_
class Ord a where
_<_ : a a Bool
instance Ord Nat where
_ < Z = False
Z < S _ = True
S n < S m = n < m
-- Monad
class Monad (m : U U) where
bind : {0 a b} m a (a m b) m b
pure : {0 a} a m a
infixl 1 _>>=_ _>>_
_>>=_ : {0 m} {{Monad m}} {0 a b} -> (m a) -> (a -> m b) -> m b
ma >>= amb = bind ma amb
_>>_ : {0 m} {{Monad m}} {0 a b} -> m a -> m b -> m b
ma >> mb = mb
-- Equality
infixl 1 _≡_
data _≡_ : {A : U} -> A -> A -> U where
Refl : {A : U} -> {a : A} -> a a
replace : {A : U} {a b : A} -> (P : A -> U) -> a b -> P a -> P b
replace p Refl x = x
cong : {A B : U} {a b : A} -> (f : A -> B) -> a b -> f a f b
sym : {A : U} -> {a b : A} -> a b -> b a
sym Refl = Refl
-- Functor
class Functor (m : U U) where
map : {0 a b} (a b) m a m b
infixr 4 _<$>_
_<$>_ : {0 f} {{Functor f}} {0 a b} (a b) f a f b
f <$> ma = map f ma
instance Functor Maybe where
map f Nothing = Nothing
map f (Just a) = Just (f a)
instance Functor List where
map f Nil = Nil
map f (x :: xs) = f x :: map f xs
instance Functor SnocList where
map f Lin = Lin
map f (xs :< x) = map f xs :< f x
-- TODO this probably should depend on / entail Functor
infixl 3 _<*>_
class Applicative (f : U U) where
-- appIsFunctor : Functor f
return : {0 a} a f a
_<*>_ : {0 a b} -> f (a b) f a f b
infixr 2 _<|>_
class Alternative (m : U U) where
_<|>_ : {0 a} m a m a m a
instance Alternative Maybe where
Nothing <|> x = x
Just x <|> _ = Just x
-- Semigroup
infixl 8 _<+>_
class Semigroup a where
_<+>_ : a a a
infixl 7 _+_
class Add a where
_+_ : a a a
infixl 8 _*_
class Mul a where
_*_ : a a a
instance Add Nat where
Z + m = m
S n + m = S (n + m)
instance Mul Nat where
Z * _ = Z
S n * m = m + n * m
infixl 7 _-_
class Sub a where
_-_ : a a a
instance Sub Nat where
Z - m = Z
n - Z = n
S n - S m = n - m
infixr 7 _++_
class Concat a where
_++_ : a a a
ptype String
ptype Int
ptype Char
-- probably want to switch to Int or implement magic Nat
pfunc length : String Nat := `(s) => {
let rval = Z
for (let i = 0; i < s.length; s++) rval = S(rval)
return rval
}`
pfunc sconcat : String String String := `(x,y) => x + y`
instance Concat String where
_++_ = sconcat
data Unit : U where
MkUnit : Unit
ptype Array : U U
pfunc listToArray : {a : U} -> List a -> Array a := `
(a, l) => {
let rval = []
while (l.tag !== 'Nil') {
rval.push(l.h1)
l = l.h2
}
return rval
}
`
pfunc alen : {0 a : U} -> Array a -> Int := `(a,arr) => arr.length`
pfunc aget : {0 a : U} -> Array a -> Int -> a := `(a, arr, ix) => arr[ix]`
pfunc aempty : {0 a : U} -> Unit -> Array a := `() => []`
pfunc arrayToList : {0 a} Array a List a := `(a,arr) => {
let rval = Nil(a)
for (let i = arr.length - 1;i >= 0; i--) {
rval = _$3A$3A_(a, arr[i], rval)
}
return rval
}`
-- for now I'll run this in JS
pfunc lines : String List String := `(s) => arrayToList(s.split('\n'))`
pfunc p_strHead : (s : String) -> Char := `(s) => s[0]`
pfunc p_strTail : (s : String) -> String := `(s) => s[0]`
pfunc trim : String -> String := `s => s.trim()`
pfunc split : String -> String -> List String := `(s, by) => {
let parts = s.split(by)
let rval = Nil(String)
parts.reverse()
parts.forEach(p => { rval = _$3A$3A_(List(String), p, rval) })
return rval
}`
pfunc slen : String -> Int := `s => s.length`
pfunc sindex : String -> Int -> Char := `(s,i) => s[i]`
-- TODO represent Nat as number at runtime
pfunc natToInt : Nat -> Int := `(n) => {
let rval = 0
while (n.tag === 'S') {
n = n.h0
rval++
}
return rval
}`
pfunc fastConcat : List String String := `(xs) => listToArray(undefined, xs).join('')`
pfunc replicate : Nat -> Char String := `(n,c) => c.repeat(natToInt(n))`
-- I don't want to use an empty type because it would be a proof of void
ptype World
data IORes : U -> U where
MkIORes : {a : U} -> a -> World -> IORes a
IO : U -> U
IO a = World -> IORes a
instance Monad IO where
bind ma mab = \ w => case ma w of
MkIORes a w => mab a w
pure a = \ w => MkIORes a w
class HasIO (m : U -> U) where
liftIO : a. IO a m a
instance HasIO IO where
liftIO a = a
pfunc primPutStrLn uses (MkIORes MkUnit) : String -> IO Unit := `(s) => (w) => {
console.log(s)
return MkIORes(undefined,MkUnit,w)
}`
putStrLn : io. {{HasIO io}} -> String -> io Unit
putStrLn s = liftIO (primPutStrLn s)
pfunc showInt : Int -> String := `(i) => String(i)`
class Show a where
show : a String
instance Show String where
show a = a
instance Show Int where
show = showInt
pfunc ord : Char -> Int := `(c) => c.charCodeAt(0)`
infix 6 _<=_
pfunc _<=_ uses (True False) : Int -> Int -> Bool := `(x,y) => (x <= y) ? True : False`
pfunc unpack : String -> List Char
:= `(s) => {
let acc = Nil(Char)
for (let i = s.length - 1; 0 <= i; i--) acc = _$3A$3A_(Char, s[i], acc)
return acc
}`
foldl : A B. (B -> A -> B) -> B -> List A -> B
foldl f acc Nil = acc
foldl f acc (x :: xs) = foldl f (f acc x) xs
infixl 9 _∘_
_∘_ : {A B C : U} -> (B -> C) -> (A -> B) -> A -> C
(f g) x = f (g x)
pfunc addInt : Int Int Int := `(x,y) => x + y`
pfunc mulInt : Int Int Int := `(x,y) => x * y`
pfunc subInt : Int Int Int := `(x,y) => x - y`
pfunc ltInt uses (True False) : Int Int Bool := `(x,y) => x < y ? True : False`
instance Mul Int where
x * y = mulInt x y
instance Add Int where
x + y = addInt x y
instance Sub Int where
x - y = subInt x y
instance Ord Int where
x < y = ltInt x y
printLn : {m} {{HasIO m}} {a} {{Show a}} a m Unit
printLn a = putStrLn (show a)
-- opaque JSObject
ptype JSObject