Files
newt/port/Prelude.newt

339 lines
7.2 KiB
Agda
Raw Blame History

module Prelude
data Bool : U where
True False : Bool
not : Bool Bool
not True = False
not False = True
-- In Idris, this is lazy in the second arg, we're not doing
-- magic laziness for now, it's messy
infixr 4 _||_
_||_ : Bool Bool Bool
True || _ = True
False || b = b
infixl 6 _==_
class Eq a where
_==_ : a a Bool
data Nat : U where
Z : Nat
S : Nat -> Nat
instance Eq Nat where
Z == Z = True
S n == S m = n == m
x == y = False
data Maybe : U -> U where
Just : {a : U} -> a -> Maybe a
Nothing : {a : U} -> Maybe a
fromMaybe : a. a Maybe a a
fromMaybe a Nothing = a
fromMaybe _ (Just a) = a
data Either : U -> U -> U where
Left : {0 a b : U} -> a -> Either a b
Right : {0 a b : U} -> b -> Either a b
infixr 7 _::_
data List : U -> U where
Nil : A. List A
_::_ : A. A List A List A
infixl 7 _:<_
data SnocList : U U where
Lin : A. SnocList A
_:<_ : A. SnocList A A SnocList A
-- 'chips'
infixr 6 _<>>_
_<>>_ : a. SnocList a List a List a
Lin <>> ys = ys
(xs :< x) <>> ys = xs <>> x :: ys
-- TODO this is special cased in some languages, maybe for easier
-- inference? Figure out why.
-- Currently very noisy in generated code (if nothing else, optimize it out?)
infixr 0 _$_
_$_ : a b. (a -> b) -> a -> b
f $ a = f a
infixr 8 _×_
infixr 2 _,_
data _×_ : U U U where
_,_ : A B. A B A × B
infixl 6 _<_
class Ord a where
_<_ : a a Bool
instance Ord Nat where
_ < Z = False
Z < S _ = True
S n < S m = n < m
-- Monad
class Monad (m : U U) where
bind : {0 a b} m a (a m b) m b
pure : {0 a} a m a
infixl 1 _>>=_ _>>_
_>>=_ : {0 m} {{Monad m}} {0 a b} -> (m a) -> (a -> m b) -> m b
ma >>= amb = bind ma amb
_>>_ : {0 m} {{Monad m}} {0 a b} -> m a -> m b -> m b
ma >> mb = mb
-- Equality
infixl 1 _≡_
data _≡_ : {A : U} -> A -> A -> U where
Refl : {A : U} -> {a : A} -> a a
replace : {A : U} {a b : A} -> (P : A -> U) -> a b -> P a -> P b
replace p Refl x = x
cong : {A B : U} {a b : A} -> (f : A -> B) -> a b -> f a f b
sym : {A : U} -> {a b : A} -> a b -> b a
sym Refl = Refl
-- Functor
class Functor (m : U U) where
map : {0 a b} (a b) m a m b
infixr 4 _<$>_
_<$>_ : {0 f} {{Functor f}} {0 a b} (a b) f a f b
f <$> ma = map f ma
instance Functor Maybe where
map f Nothing = Nothing
map f (Just a) = Just (f a)
instance Functor List where
map f Nil = Nil
map f (x :: xs) = f x :: map f xs
instance Functor SnocList where
map f Lin = Lin
map f (xs :< x) = map f xs :< f x
-- TODO this probably should depend on / entail Functor
infixl 3 _<*>_
class Applicative (f : U U) where
-- appIsFunctor : Functor f
return : {0 a} a f a
_<*>_ : {0 a b} -> f (a b) f a f b
infixr 2 _<|>_
class Alternative (m : U U) where
_<|>_ : {0 a} m a m a m a
instance Alternative Maybe where
Nothing <|> x = x
Just x <|> _ = Just x
-- Semigroup
infixl 8 _<+>_
class Semigroup a where
_<+>_ : a a a
infixl 7 _+_
class Add a where
_+_ : a a a
infixl 8 _*_
class Mul a where
_*_ : a a a
instance Add Nat where
Z + m = m
S n + m = S (n + m)
instance Mul Nat where
Z * _ = Z
S n * m = m + n * m
infixl 7 _-_
class Sub a where
_-_ : a a a
instance Sub Nat where
Z - m = Z
n - Z = n
S n - S m = n - m
infixr 7 _++_
class Concat a where
_++_ : a a a
ptype String
ptype Int
ptype Char
-- probably want to switch to Int or implement magic Nat
pfunc length : String Nat := `(s) => {
let rval = Z
for (let i = 0; i < s.length; s++) rval = S(rval)
return rval
}`
pfunc sconcat : String String String := `(x,y) => x + y`
instance Concat String where
_++_ = sconcat
data Unit : U where
MkUnit : Unit
ptype Array : U U
pfunc listToArray : {a : U} -> List a -> Array a := `
(a, l) => {
let rval = []
while (l.tag !== 'Nil') {
rval.push(l.h1)
l = l.h2
}
return rval
}
`
pfunc alen : {0 a : U} -> Array a -> Int := `(a,arr) => arr.length`
pfunc aget : {0 a : U} -> Array a -> Int -> a := `(a, arr, ix) => arr[ix]`
pfunc aempty : {0 a : U} -> Unit -> Array a := `() => []`
pfunc arrayToList : {0 a} Array a List a := `(a,arr) => {
let rval = Nil(a)
for (let i = arr.length - 1;i >= 0; i--) {
rval = _$3A$3A_(a, arr[i], rval)
}
return rval
}`
-- for now I'll run this in JS
pfunc lines : String List String := `(s) => arrayToList(s.split('\n'))`
pfunc p_strHead : (s : String) -> Char := `(s) => s[0]`
pfunc p_strTail : (s : String) -> String := `(s) => s[0]`
pfunc trim : String -> String := `s => s.trim()`
pfunc split : String -> String -> List String := `(s, by) => {
let parts = s.split(by)
let rval = Nil(String)
parts.reverse()
parts.forEach(p => { rval = _$3A$3A_(List(String), p, rval) })
return rval
}`
pfunc slen : String -> Int := `s => s.length`
pfunc sindex : String -> Int -> Char := `(s,i) => s[i]`
-- TODO represent Nat as number at runtime
pfunc natToInt : Nat -> Int := `(n) => {
let rval = 0
while (n.tag === 'S') {
n = n.h0
rval++
}
return rval
}`
pfunc fastConcat : List String String := `(xs) => listToArray(undefined, xs).join('')`
pfunc replicate : Nat -> Char String := `(n,c) => c.repeat(natToInt(n))`
-- I don't want to use an empty type because it would be a proof of void
ptype World
data IORes : U -> U where
MkIORes : {a : U} -> a -> World -> IORes a
IO : U -> U
IO a = World -> IORes a
instance Monad IO where
bind ma mab = \ w => case ma w of
MkIORes a w => mab a w
pure a = \ w => MkIORes a w
class HasIO (m : U -> U) where
liftIO : a. IO a m a
instance HasIO IO where
liftIO a = a
pfunc primPutStrLn uses (MkIORes MkUnit) : String -> IO Unit := `(s) => (w) => {
console.log(s)
return MkIORes(undefined,MkUnit,w)
}`
putStrLn : io. {{HasIO io}} -> String -> io Unit
putStrLn s = liftIO (primPutStrLn s)
pfunc showInt : Int -> String := `(i) => String(i)`
class Show a where
show : a String
instance Show String where
show a = a
instance Show Int where
show = showInt
pfunc ord : Char -> Int := `(c) => c.charCodeAt(0)`
infix 6 _<=_
pfunc _<=_ uses (True False) : Int -> Int -> Bool := `(x,y) => (x <= y) ? True : False`
pfunc unpack : String -> List Char
:= `(s) => {
let acc = Nil(Char)
for (let i = s.length - 1; 0 <= i; i--) acc = _$3A$3A_(Char, s[i], acc)
return acc
}`
foldl : A B. (B -> A -> B) -> B -> List A -> B
foldl f acc Nil = acc
foldl f acc (x :: xs) = foldl f (f acc x) xs
infixl 9 _∘_
_∘_ : {A B C : U} -> (B -> C) -> (A -> B) -> A -> C
(f g) x = f (g x)
pfunc addInt : Int Int Int := `(x,y) => x + y`
pfunc mulInt : Int Int Int := `(x,y) => x * y`
pfunc subInt : Int Int Int := `(x,y) => x - y`
pfunc ltInt uses (True False) : Int Int Bool := `(x,y) => x < y ? True : False`
instance Mul Int where
x * y = mulInt x y
instance Add Int where
x + y = addInt x y
instance Sub Int where
x - y = subInt x y
instance Ord Int where
x < y = ltInt x y
printLn : {m} {{HasIO m}} {a} {{Show a}} a m Unit
printLn a = putStrLn (show a)
-- opaque JSObject
ptype JSObject